Aus der Medizinischen Universitätsklinik Heidelberg
(Geschäftsführender Direktor: Professor Dr. med. Hugo A. Katus)
Abteilung Allgemeinmedizin und Versorgungsforschung
(Ärztlicher Direktor: Professor Dr. med. Joachim Szecsenyi)

Patientenbefragung
zur
Lebensqualität und Behandlungszufriedenheit
für
Disease Management Programme bei Diabetes mellitus:
Entwicklung von Werkzeugen und Machbarkeitsstudie

Inauguraldissertation
zur Erlangung des medizinischen Doktorgrades
der
Medizinischen Fakultät Heidelberg
der
Ruprecht-Karls-Universität

vorgelegt von
Claudia Preuß

aus
Pforzheim

2006
Dekan: Prof. Dr. med. C. R. Bartram
Doktorvater: Prof. Dr. med. H.-D. Klimm
Inhaltsverzeichnis

1 Einleitung 4
 1.1 Adressaten der Arbeit 4
 1.2 Gesetzlicher Hintergrund 4
 1.3 Bedeutung des Diabetes mellitus 4
 1.4 Disease Management Programme (DMP) 5
 1.4.1 Definition 5
 1.4.2 Ziele des Disease-Management 5
 1.4.3 Diabetes mellitus im Rahmen der Disease Management Programme 7
 1.5 Evidenz-basierte Medizin (EBM) 7
 1.6 Die Rolle des Hausarztes 8
 1.7 Die gesundheitsbezogene Lebensqualität 9
 1.8 Ziele der Studie 11

2 Material und Methoden 12
 2.1 Zusammenstellung der Fragebögen 12
 2.1.1 Überblick 12
 2.1.2 Identifikation verfügbarer Instrumente 12
 2.1.3 Generierung eigener diabetesbezogener Fragen 17
 2.2 Vorbereitung und Durchführung der Befragung 18
 2.2.1 Kooperation mit der AOK 18
 2.2.2 Patientenauswahl, Erstellung einer Adressdatenbank 20
 2.2.3 Vorbereitung der Serienbrief-Vorlage 20
 2.2.4 Serienbrief-Dateien generieren und versenden 21
 2.2.5 Ausfüllen des Fragebogens durch Patienten 22
 2.2.6 Verarbeitung der gescannten Fragebögen 22
 2.2.7 Testläufe über verschiedene Schritte - übersehener Fehler im Fragebogen 23
 2.2.8 Statistische Auswertung 23

3 Ergebnisse 25
 3.1 Ablauf der Erhebung und der Datenaufbereitung 25
 3.1.1 Technische Umsetzung 25
 3.1.2 Datenexport und Zusammenführung 27
 3.1.3 Zeitlicher und finanzieller Aufwand der Befragung 27
 3.2 Inhalt des Datenrücklaufs 27
 3.2.1 Patientenauswahl, Fragebogenversand und Rücklauf 27
3.2.2 Soziodemographische Daten ... 30
3.2.3 Lebensqualität - QLQ-C30 ... 31
3.2.4 Diabetesbezogene Fragen ... 33
3.2.5 Metafragen .. 39
3.3 Beziehungen zwischen den Daten ... 40
3.3.1 Korrelationen innerhalb der soziodemographischen Daten 40
3.3.2 Korrelationen innerhalb der Ergebnisse zur Lebensqualität 40
3.3.3 Korrelationen innerhalb der diabetesbezogenen Fragen 44
3.3.4 Korrelationen innerhalb der Metafragen .. 46
3.3.5 Korrelationen zwischen den Fragebogenteilen 46

4 Diskussion ... 50
4.1 Ablauf der Erhebung und Datenqualität .. 50
4.1.1 Zusammenstellung des Fragebogens .. 50
4.1.2 Technische Umsetzung ... 50
4.1.3 Patientenauswahl, Fragebogenversand und Rücklauf 51
4.2 Inhalt des Datenrücklaufs ... 55
4.2.1 Soziodemographische Daten .. 55
4.2.2 Lebensqualität - QLQ-C30 ... 57
4.2.3 Diabetesbezogene Fragen ... 58
4.2.4 Metafragen ... 66
4.3 Beziehungen zwischen den Daten ... 67
4.3.1 Vorbemerkung ... 67
4.3.2 Korrelationen innerhalb der soziodemographischen Daten 67
4.3.3 Korrelationen innerhalb der Ergebnisse zur Lebensqualität 67
4.3.4 Korrelationen innerhalb der diabetesbezogenen Fragen 68
4.3.5 Korrelationen innerhalb der Metafragen .. 69
4.3.6 Korrelationen zwischen den Fragebogenteilen 69
4.4 Schlussfolgerungen .. 72

5 Zusammenfassung ... 74

6 Literaturverzeichnis ... 76

7 Anhang .. 89

8 Lebenslauf .. 101

9 Danksagung ... 102
Verzeichnis der verwendeten Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOK</td>
<td>Allgemeine Ortskrankenkasse</td>
</tr>
<tr>
<td>BMI</td>
<td>Body-Mass-Index ([\text{kg/m}^2])</td>
</tr>
<tr>
<td>BMP</td>
<td>Bitmap Format, ein Format für Bilddateien</td>
</tr>
<tr>
<td>BZ</td>
<td>Blutzucker ([\text{mg/dl}])</td>
</tr>
<tr>
<td>CSV</td>
<td>Comma Separated Values, durch Kommata getrenntes Tabellenformat</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>DMP</td>
<td>Disease Management Programm</td>
</tr>
<tr>
<td>EBM</td>
<td>Evidence-based medicine, Evidenz-basierte Medizin</td>
</tr>
<tr>
<td>EDV</td>
<td>Elektronische Datenverarbeitung</td>
</tr>
<tr>
<td>EORTC</td>
<td>European Organisation for Research and Treatment of Cancer</td>
</tr>
<tr>
<td>HbA1c</td>
<td>Glykohämoglobin (A_{1c})</td>
</tr>
<tr>
<td>HDL</td>
<td>High Density Lipoprotein</td>
</tr>
<tr>
<td>KV</td>
<td>Kassenärztliche Vereinigung</td>
</tr>
<tr>
<td>LDL</td>
<td>Low Density Lipoprotein</td>
</tr>
<tr>
<td>LQ</td>
<td>Lebensqualität</td>
</tr>
<tr>
<td>OMR</td>
<td>Optical Mark Recognition, optische Erkennung von Markierungen</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PDF</td>
<td>Portable Document Format, ein Dateiformat für Dokumente</td>
</tr>
<tr>
<td>PID</td>
<td>Patienten-Identifikationsnummer</td>
</tr>
<tr>
<td>QoL, QL</td>
<td>Quality of Life, Lebensqualität</td>
</tr>
<tr>
<td>QLQ-C30</td>
<td>Quality of Life Questionnaire, Core, 30 Questions</td>
</tr>
<tr>
<td>RR</td>
<td>Blutdruck nach Riva Rocci ([\text{mmHg}])</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operating Procedure, detaillierte Arbeitsanweisung</td>
</tr>
<tr>
<td>Stabw.</td>
<td>Standardabweichung ([\pm])</td>
</tr>
<tr>
<td>TIFF</td>
<td>Tagged Image File Format, ein Format für Bilddaten</td>
</tr>
<tr>
<td>UKPDS</td>
<td>United Kingdom Prospective Diabetes Study</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
1 Einleitung

1.1 Adressaten der Arbeit

Die vorliegende Arbeit richtet sich an hausärztlich tätige Allgemeinmediziner und Internisten, die mit den Disease-Management-Programmen (DMPs) konfrontiert sind und an Kassenvertreter, die seit der Einführung der DMPs eine aktivere Rolle in der Vergabe von finanziellen Mitteln haben. Außerdem kann die Studie für Mitglieder der Kassenärztlichen Vereinigung (KV), soweit diese für die Einführung der DMPs und für die Gesundheitsversorgung zuständig sind, von Interesse sein.

1.2 Gesetzlicher Hintergrund

Um eine strukturierte Behandlung einzuführen, die sowohl eine bessere Versorgung der Patienten als auch einen optimalen Einsatz der begrenzten finanziellen Ressourcen gewährleisten soll, wurden die gesetzlichen Krankenkassen vom Gesetzgeber beauftragt, Disease-Management-Programme (DMPs) auszufordern und diese zusammen mit den Vertragsärzten durchzuführen. Als erster Schritt auf diesem Weg wurden in Baden-Württemberg in Zusammenarbeit zwischen der AOK und der KV Südbaden die Stadt Pforzheim und der Enzkreis als Testregion ausgewählt. Hier sollte ein DMP Diabetes mellitus als Modellvorhaben erprobt werden. Erste Verträge mit niedergelassenen Ärzten in der Testregion wurden im Frühjahr 2002 unterzeichnet; die Ärzte boten wiederum ihren Patienten die Teilnahme am Disease-Management-Programm an.

Die Einführung des DMP Diabetes mellitus soll unter anderem die Behandlungsqualität durch strukturiertes Vorgehen nach aktuellem Wissensstand verbessern. Um den Nutzen des Programms zu prüfen, sind stichprobenartige Evaluationen auch der Lebensqualität und Zufriedenheit mittels Befragungen der Patienten gesetzlich vorgesehen (§137f Abs. 2, Satz 2, Nr. 6 SGB V). Häufig werden solche Befragungen von kommerziellen Anbietern mit relativ hohem finanziellen Aufwand durchgeführt. Zu Beginn dieser Arbeit waren genaue Inhalte und Vorgaben zur Durchführung der Befragungen nicht in der Gesetzesvorlage festgelegt. Es blieb daher Raum für die Entwicklung von Instrumenten und Methoden, die eine Durchführung von Befragungen mit möglichst geringem praktischen und finanziellen Aufwand, beispielsweise für die universitäre Forschung, ermöglichen.

1.3 Bedeutung des Diabetes mellitus

Diabetes mellitus (DM) Typ 2 gehört zu den häufigen chronischen Krankheiten in Deutschland.

In einer 2001 veröffentlichten Untersuchung gaben Chantelau und Abholz eine aufgrund von Stichproben ermittelte DM Typ 2 Gesamthäufigkeit von 5% der deutschen Gesamtbevölkerung an, d.h. ca. 4 Mio. von 80 Mio. Die Prävalenz des DM Typ 1 wurde dagegen auf 0,25% geschätzt, was einer Verteilung von 95% Typ-2- und 5% Typ-1-Diabetikern entspricht [17].

Selbstannamnestische Angaben im Bundes-Gesundheitssurvey 1997/98 ergaben eine Prävalenz des Diabetes mellitus Typ 2 von 4,7% bei Männern und 5,6% bei Frauen [61, 119].

Hinzu kommt die häufig kontrovers diskutierte Prävalenz des unentdeckten Diabetes mellitus, die unter anderem im meist symptomarmen Krankheitsbeginn begründet liegt. Unter Verwendung des Glucose-Toleranztestes wurde in einer populationsbasierten Untersuchung um Augsburg in der Gruppe der 55- bis 74-Jährigen eine Prävalenz des unentdeckten Diabetes von 8,2% festgestellt, die etwa so hoch wie die des diagnostizierten Diabetes nach dieser Untersuchung war [98].

Die häufigsten Folgeerkrankungen betreffen das kardiovaskuläre System. Sie erklären auch die hohe Morbidität und Mortalität dieser Patientengruppe [125, 126]. Nach Untersuchungen von Wilson und Kannel steigt das kardiovaskuläre Risiko durch Typ-2-Diabetes um einen Faktor von zwei bis vier [139]. Diabetes mellitus ist in den Industrieländern die vierthäufigste Todesursache, kardiovaskuläre Erkrankungen sind dabei für bis zu 75% der Gesamt mortalität verantwortlich [42]. Im Vergleich zu Nichtdiabetikern ist die jährliche Durchschnittsmortalität bei Typ-2-Diabetikern mit 5,4% doppelt so hoch wie bei altersgleichen Nichtdiabetikern [142], was eine durchschnittliche Verminderung der Lebenserwartung um 5 bis 10 Jahre bedeutet. Weitere schwerwiegende Folgeerkrankungen sind Niereninsuffizienz, Erblindung und diabetische Neuropathie. Besonders die diabetischen Folgeerkrankungen machen eine stationäre Einweisung notwendig und bedingen dadurch etwa 50% der Behandlungskosten des Diabetes mellitus. Hier ist durch intensivierte Prävention und besseres Krankheitsmanagement ein erheblicher medizinischer und gesundheitsökonomischer Nutzen zu erwarten [76].

1.4 Disease Management Programme (DMP)

1.4.1 Definition

Bisher existiert keine eindeutige Definition der Disease Management Programme, da das Konzept noch relativ neu ist [106]. In der Literatur finden sich verschiedene Beispiele:

“Disease-Management ist normative und koordinative Prozeßsteuerung mit dem Ziel der qualitativen und ökonomischen Beherrschung von Krankheit und Gesundheit [84].”

“Disease-Management ist ein Ansatz, der die Ressourcenallokation über die Grenzen der Leistungserbringer hinweg und über den gesamten Verlauf einer Krankheit - von der Prävention bis zur Nachbehandlung - koordiniert und optimiert. Während traditionelle Ansätze versuchen, die Kosten in einzelnen Teilbereichen der Gesundheitsversorgung zu minimieren, ist Disease-Management ein ganzheitlicher und systematischer Ansatz, der bei der Behandlung Interdependenzen zwischen unterschiedlichen Komponenten berücksichtigt, Behandlungsergebnisse misst und darauf aufbauend die Vorgehensweise bei der Behandlung permanent anpaßt [78].”

Als gemeinsames Fazit kann Disease-Management als ein integrativer und koordinierter Ansatz zur Verbesserung von Qualität und Wirtschaftlichkeit der medizinischen Versorgung beschrieben werden.

Eine ausführliche Beschreibung von Inhalt und Rahmenbedingungen sogenannter “strukturierter Behandlungsprogramme” im Rahmen der gesetzlichen Krankenversicherung findet sich in §137f SGB V; die sektorenübergreifende Versorgung von Patienten wird durch die Aufnahme der integrierten Versorgung in das Sozialgesetzbuch (Versorgungsformen nach §140a SGB V) ermöglicht.

1.4.2 Ziele des Disease-Management

- Betrachtung des gesamten Krankheitsverlaufs hinsichtlich der Ergebnisse und der Kosten.
- Verbesserung der Qualität in der medizinischen Versorgung.
- Vermeidung akuter (kostenintensiver) Stadien chronischer Erkrankungen.
- Vermeidung spezifischer Langzeitfolgen (bei DM z.B. Erblindung, Dialyse, Amputation).
- Ausschöpfung bestehender Kosteneinsparungspotentiale.
- Unterstützung von Eigenaktivität und Gesundheitskompetenz des Patienten [78, 84, 106].

Voraussetzungen für eine erfolgreiche Einführung

- Möglichkeiten der variablen Vertragsgestaltung mit den Leistungserbringern auf allen Ebenen des Gesundheitsversorgungssystems, damit eine kooperative Versorgungsstruktur etabliert werden kann.
- Das Vorhandensein möglichst verlässlicher Informationen zur Unterstützung klinischer Entscheidungen, idealerweise beurteilt nach den Konzepten der Evidence-based-Medicine (EBM) [103].
- Standardisierte Dokumentation und automatisierte Weitergabe von klinischen, patientenorientierten und ökonomischen Ergebnissen, um eine Weiterentwicklung und Anpassung von Behandlungsleitlinien zu ermöglichen.
- Fähigkeit und Wille zur ständigen Qualitätsverbesserung und -sicherung bei allen Beteiligten [66].

Vorgehen bei der Entwicklung der Disease Management Programme

Hauptidelemente der Disease Management Programme

- Bereitstellen von Evidenz-basierten Entscheidungsgrundlagen für die Therapie.
- Sicherung einer kontinuierlichen, dem medizinischen Standard angepassten Behandlung durch regelmäßige Evaluation der erhobenen Behandlungsdaten.
- Motivation der Patienten (Förderung von Eigenaktivität und Krankheitsverständnis) durch Schulungen [66].

Ärztliche Kritik bei der Einführung der DMPs

1.4.3 Diabetes mellitus im Rahmen der Disease Management Programme

Folgende Merkmale machen Diabetes mellitus für DMPs geeignet [66]:

- Hohe Prävalenz und hohe Behandlungskosten.
- Der Verlauf der Erkrankung ist frühzeitig beeinflussbar, wodurch schwere Krankheitszustände vermieden werden können.
- Hospitalisierungen können vermieden oder durch andere therapeutische Maßnahmen ersetzt werden.
- Es gibt Krankheitszustände, die mit minimalem Ressourcenverbrauch ambulant behandelt werden können.
- Bestehende Therapievarianz je nach behandelndem Arzt und behandeltem Patient, die zu schlechter Koordination der Behandlung führt.
- Schulung von Patienten oder Angehörigen können das Selbstmanagement unterstützen.
- Daten über Patienten, die Behandlung und Behandlungsergebnisse sind verfügbar.
- Ein Konsens über Behandlungsqualität, zu erzielende Ergebnisse und deren Verbesserung kann erarbeitet werden.

Im Rahmen der gesetzlichen Krankenversicherung in Deutschland existieren weitere DMPs für das Mammakarzinom, chronische obstruktive Atemwegserkrankungen und Herz-Kreislauferkrankungen.

1.5 Evidenz-basierte Medizin (EBM)

Evidenz-basierte Medizin gewinnt auch im deutschsprachigen Raum an Bedeutung. Seitens der Ärzte und Patientenvertreter wird damit - wohl in Unkenntnis der Sackettschen Originalquellen - oft die Befürchtung verbunden, dass vor allem eine Kostenreduktion zu Lasten der Versorgungsqualität angestrebt, oder dass die ärztliche Therapiefreiheit durch "Kochbuchmedizin" nach Leitlinien ersetzt werde. Tatsächlich will EBM jedoch Ärzte in die Lage versetzen, deren eigene klinische Erfahrung und die Präferenzen des Patienten mit der besten wissenschaftlichen Auskunft aus klinisch relevanter Forschung zu verbinden. Dazu vermittelt sie die Fähigkeit, aus einer großen Zahl fachspezifischer Studien diejenigen herauszufinden, die nach Design, Methoden, Gruppenauswahl etc. überhaupt verlässliche und auf die spezielle Fragestellung anwendbare Ergebnisse versprechen. Daran anschließend lehrt sie aber auch, wie der in der wissenschaftlichen Studie für ein Kollektiv demonstrierte Nutzen so umgerechnet werden kann, dass die Besonderheiten des individuellen Patienten zum Tragen kommen. Auch die Möglichkeiten oder Einschränkungen unterschiedlicher Arbeitsumgebungen werden berücksichtigt. Schließlich wird die Frage "Was will mein Patient?" in jedem Fall besonders betont [103].
Geschichte der EBM

Der Begriff “evidence-based medicine” entstand in den 70er Jahren des letzten Jahrhunderts an der kanadischen McMaster Medical School aus dem Konzept “evidence-based learning”, dem mehrere methodische Schritte zugrunde liegen: Zunächst wird das zu lösende Problem definiert, dann folgt die Literaturrecherche nach dem aktuellen Stand der Wissenschaft. Durch die kritische Beurteilung der gefundenen Literatur wird entschieden, ob sie in den Entscheidungsprozess mit einbezogen werden soll [104].

Das methodische Vorgehen bei der problemorientierten wissenschaftlichen Informationssuche und -beurteilung ermöglicht eine optimale Nutzung aktueller klinischer Studien statt alleiniger “althergebrachter Lehrmeinung” oder “Intuition” zur Entscheidungsfindung [15].

Das Cochrane Center

1.6 Die Rolle des Hausarztes

Erster Ansprechpartner für Diabetiker ist in der Regel der Hausarzt. Da die Versorgungsqualität über viele Jahre hinweg das therapeutische Outcome bei Diabetes mellitus maßgeblich beeinflusst, ist die gute Zusammenarbeit von Arzt und Patient hier besonders wichtig [102]. Für schwer einstellbare Patienten und besonders Typ-1-Diabetiker stehen auch spezielle Diabeteskliniken zur stationären oder teilstationären Behandlung zur Verfügung, an der fachärztlichen ambulanten Versorgung sind außerdem Diabetologen, Internisten, Ophthalmologen und Neurologen beteiligt.

Für den Hausarzt kann es bei der oft jahre- und teils lebenslangen Patientenbegleitung eventuell schwierig sein, trotzdem regelmäßig das Richtige zu tun: Jeden Diabetiker mit Übergewicht immer wieder auf Diät und Lebensführung anzusprechen, auf Fußpflege und die Bedeutung der Schuhe hinzuweisen oder nicht

1.7 Die gesundheitsbezogene Lebensqualität

In der klinischen Medizin, die sich mit dem kranken Menschen befasst, wird insbesondere von gesundheitsbezogener Lebensqualität („Health related quality of life“, HrQL) gesprochen [86, 140]. Die gesundheitsbezogene Lebensqualität konzentriert sich auf die Auswirkungen von Krankheit und Behandlung auf das Funktionieren im täglichen Leben [64], sowie den Einfluss von Gesundheit auf die Fähigkeit eines Individuums, ein erfülltes Leben zu führen [46].

Aussagekraft von Lebensqualitäts-Daten

In verschiedenen Untersuchungen hat sich gezeigt, dass eine Fremdeinschätzung der Lebensqualität von Patienten durch medizinisches Personal von der Selbsteinschätzung des Patienten abweichen kann. Bei Spitzer et al. 1981 [111] wurde z.B. eine hohe Korrelation für die Einschätzung durch verschiedene Personen gefunden, jedoch nur für Patienten in relativ schlechtem Zustand. In anderen Fällen können durchaus Schwierigkeiten bei der Einschätzung der Lebensqualität und beim Erkennen von Problemen auftreten [97, 132], was unter anderem zu Unzufriedenheit seitens der Patienten führen kann [135]. Hieraus läßt sich
schließen, dass die Selbsteinschätzung der Lebensqualität durch den Patienten eine wertvolle Zusatzinformation liefert, die durch die reine Fremdeurteilung, wie z.B. über den Karnofsky-Index, der vor allem die körperliche Funktion berücksichtigt, nicht erreicht werden kann [120].

Auch wenn der Wert der Messung von Lebensqualität eine immer breitere Akzeptanz findet, scheitert ihre routinemäßige Erhebung häufig an mangelhafter Kenntnis geeigneter Methoden.

In den vergangenen Jahren wurden zahlreiche verschiedene Fragebögen zur Lebensqualität entwickelt, sowohl im Hinblick auf die allgemeine Lebensqualität als auch speziell auf Krankheiten oder Therapien bezogen. Beispiele für allgemeine LQ-Fragebogen sind der Quality of Life Questionnaire, Core, mit 30 Fragen (QLQ-C30) der European Organisation for Research and Treatment of Cancer (EORTC) [113] und der Short Form-36 Health Survey (SF-36) [134].

LQ-Messung bei Patienten mit Diabetes mellitus

Obwohl besonders beim Diabetes mellitus Typ 2 lange Zeit keine krankheitsspezifischen Symptome aufgetreten, kann die Lebensqualität ohne adäquate Therapie durch Folgeerkrankungen stark und irreversibel beeinträchtigt werden. Die Messung der Lebensqualität sollte bei Diabetikern den Allgemeinzustand (general physical functioning), die Beeinträchtigung durch Symptome (symptom distress), die soziale Situation (social functioning), die subjektive Belastung durch die Behandlung (subjective impact of treatment regimen), die Behandlungszufriedenheit (satisfaction with treatment) und die allgemeine Zufriedenheit (overall sense of well-being) erfassen [6].

So lange Diabetiker trotz ihrer Erkrankung eine gute Lebensqualität haben, werden sie den Behandlungsanforderungen in der Regel leichter gerecht. Gelingt es aber langfristig nicht, die Therapiemaßnahmen im Alltag umzusetzen, so verschlechtert sich die Stoffwechselsituation, wodurch das Risiko von Folgeerkrankungen steigt. Diese führen wiederum zu einer Verschlechterung der Lebensqualität und zur Beeinträchtigung des behandlungsbezogenen Selbstmanagements [60, 138].

Entsprechende Fragebögen umfassen eine ganze Reihe von Fragen oder Skalen, die die oben genannten Dimensionen abdecken. Die vorhandenen Instrumente gliedern sich in „generische“, also allgemeine krankheitsübergreifende und „spezifische“, also auf Einschränkungen aufgrund bestimmter Erkrankungen oder deren behandlungsbedingte Nebenwirkungen gerichtete Instrumente. Auf einzelne Instrumente zur Messung der Lebensqualität wird im Folgenden noch eingegangen.
1.8 Ziele der Studie

2 Material und Methoden

2.1 Zusammenstellung der Fragebögen

2.1.1 Überblick

Die Befragung sollte außer einigen medizinischen Daten (Blutzucker, Blutdruck, Cholesterinspiegel, Größe und Gewicht) auch Angaben zu Arztbesuchen und Behandlungszufriedenheit sowie die subjektive Einschätzung der gesundheitsbezogenen Lebensqualität erfassen. Mit einer Recherche in verschiedenen Literaturdatenbanken sowie einer spezialisierten Datenbank für Instrumente zur Messung der Lebensqualität wurde nach Fragebögen und Studien im Bereich Diabetes mellitus gesucht.

Diese Suche lieferte eine Anzahl von Fragebögen, sowohl generische als auch krankheitsspezifische. Die diabetesspezifischen Fragebögen waren jedoch entweder nicht ausreichend validiert, nicht in einer deutschen Übersetzung oder nicht kostenlos verfügbar. Darüber hinaus umfasste keiner der Fragebögen alle für die Befragung vorgesehenen Bereiche.

Daher wurde ein validierter generischer Lebensqualitäts-Fragebogen gewählt, der mit Fragen zu soziodemographischen Angaben, Diabetes mellitus, Inanspruchnahme von und Zufriedenheit mit medizinischen Leistungen ergänzt werden sollte.

Die einzelnen Schritte sind im Folgenden näher beschrieben und in den Abbildungen 1 und 2 graphisch dargestellt.

2.1.2 Identifikation verfügbarer Instrumente

Diabetesspezifische Instrumente: Eine Suche nach wissenschaftlichen Publikationen mit den auf der Website des Deutschen Instituts für Medizinische Dokumentation und Information (DIMDI, [144]) bereitgestellten Werkzeugen erstreckte sich auf die folgenden Datenbanken:

- AnimAlt-ZEBET (ZT00); Cancerlit (CL63); Euroethics (EU93); GEROLIT (GE79);
- Kluwer-Verlagsdatenbank fuer Volltexte (KL97); MEDIKAT (MK77); MEDLINE (ML66);
- MEDLINE ALERT (ME0A); Oldmedline (ME60); Russmed Articles (SU88); Springer PrePrint (SPPP); Springer-Verlagsdatenbank fuer Volltexte (SP97); TOXLINE (T165).

Tabelle 1 zeigt die verwendeten Suchabfragen.

Der Großteil der durchgeesehenen Arbeiten bezog sich nicht auf Fragebögen selbst, sondern verwendete lediglich von Dritten entwickelte Instrumente zum Vergleich verschiedener Therapien. Häufig war der Inhalt der jeweiligen Instrumente dabei nicht weiter angegeben.

Eine Suche in der auf Lebensqualitäts-Instrumente spezialisierten Datenbank QOLID version 2.0 (Quality of Life Instruments Database, [149]) mit dem Suchbegriff Diabetes ergab 8 Instrumente. Aus beiden Suchen wurden für unsere Fragestellung die in Tabelle 2 genannten Instrumente als möglicherweise geeignet identifiziert.

Abbildung 1: Graphische Darstellung des Ablaufs der Entwicklung von Fragebogen-Inhalten und technischer Infrastruktur. OMR: Optical Mark Recognition.
Tabelle 1: Ausgewählte Schritte der Literatursuche

<table>
<thead>
<tr>
<th>verwendete Suchschritte</th>
<th>Suchergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>(diabetes AND questionnaire) AND (PY=1980 to 2002)</td>
<td>3.367 Suchergebnisse</td>
</tr>
<tr>
<td>(diabetes mellitus AND questionnaire) AND (LA=ENGLISH or LA=GERMAN)</td>
<td>2.450 Suchergebnisse</td>
</tr>
<tr>
<td>(diabetes mellitus AND questionnaire) AND (patient) AND (LA=ENGLISH OR LA=GERMAN OR LA=FRENCH)</td>
<td>840 Suchergebnisse</td>
</tr>
</tbody>
</table>

Nach Durchsicht der verfügbaren Instrumente erwiesen sich diese aus einem oder mehreren der folgenden Gründe als nicht ohne weiteres für unser Projekt geeignet: Nicht kostenlos erhältlich, überhaupt nicht verfügbar, zu lang oder unserem Fragengebiet nicht entsprechend (für die vorliegende Studie zu starke Gewichtung psychologischer oder kognitiver Aspekte, dagegen allgemeinmedizinisch oder internistisch relevant erscheinende Aspekte vernachlässigt).
Tabelle 2: Nach Recherchen möglicherweise relevante diabetesspezifische Instrumente (Auswahl)

<table>
<thead>
<tr>
<th>Name des Fragebogens</th>
<th>Zielsetzung / erfasste Bereiche</th>
<th>Anzahl der Fragen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes Attitude Scale [2]</td>
<td>General diabetes related attitudes</td>
<td>33 items</td>
</tr>
<tr>
<td>Diabetes Empowerment Scale [3]</td>
<td>Diabetes-related psychosocial self-efficacy</td>
<td>28 items</td>
</tr>
<tr>
<td>Audit of Diabetes Dependent QoL [13]</td>
<td>Individuals’ perceptions of the impact of diabetes on their QoL</td>
<td>13 items</td>
</tr>
<tr>
<td>Wellbeing Questionnaire [12, 95]</td>
<td>Mood in the management of diabetes care</td>
<td>22 items (short: 12)</td>
</tr>
<tr>
<td>Diabetes Treatment Satisfaction Questionnaire [11]</td>
<td>Satisfaction with diabetes treatment regimens and changes in satisfaction</td>
<td>8 items</td>
</tr>
<tr>
<td>Diabetes Knowledge Test [39]</td>
<td>Test of general knowledge of diabetes</td>
<td>23 items</td>
</tr>
<tr>
<td>Diabetes Care Profile [38]</td>
<td>Social and psychological factors related to diabetes and its treatment</td>
<td>234 items</td>
</tr>
<tr>
<td>Diabetes Symptom Checklist - Revised [47]</td>
<td>Occurrence and perceived burden of physical and psychological symptoms related to type 2 diabetes and its possible complications</td>
<td>34 items</td>
</tr>
<tr>
<td>Problem Areas in Diabetes Scale [91]</td>
<td>Diabetes related distress (type 1 and type 2)</td>
<td>20 items</td>
</tr>
<tr>
<td>Diabetes Health Profile [79]</td>
<td>Psychosocial profile of insulin-requiring patients</td>
<td>31 items</td>
</tr>
<tr>
<td>Diabetes Quality of Life Questionnaire [58]</td>
<td>QoL in patients with type 1 diabetes</td>
<td>46 items</td>
</tr>
<tr>
<td>Diabetes-39 [10]</td>
<td>QoL of people with diabetes</td>
<td>39 items</td>
</tr>
<tr>
<td>Diabetes-Specific Quality of Life Scale [9]</td>
<td>Treatment goal, treatment satisfaction and perceived burden</td>
<td>64 items</td>
</tr>
</tbody>
</table>
Generische Instrumente: Der gesuchte Fragebogen zur gesundheitsbezogenen Lebensqualität sollte mit relativ wenigen Fragen Ergebnisse liefern, die Funktionen und Symptome mit gut verständlicher Beziehung sowohl zu psychologischen als auch zu medizinischen oder internistischen Bereichen wiedergeben. Daher wurden neben diabetesspezifischen Instrumenten auch die beiden generischen Lebensqualitätsfragebögen SF-36 und QLQ-C30 betrachtet.

Der SF-36 (Short Form, 36 Questions) wurde ursprünglich für die Anwendung in der Gesundheitsforschung im Versicherungsbereich in den USA entwickelt [133, 134]. Er ist einer der am häufigsten in ganz unterschiedlichen Fachgebieten der Medizin eingesetzten LQ-Fragebögen. In einer Zwischenstufe der Auswertung werden verschiedene Funktionsbereiche abgedeckt (Physical Functioning, Role Physical, Bodily Pain, General Health, Vitality, Social Functioning, Role Emotional, Mental Health). Dazu noch das Health Transition-Item (Gesundheitszustand im Vergleich zu vor einem Jahr). Diese werden zu den PCS (Physical Health Component Summary) und MCS (Mental Health Component Summary) zusammengefasst und mit einer amerikanischen Referenzpopulation verglichen. Die beiden letzten Angaben “Körperliche Funktion” und “Psychologische Funktion” erlauben keine direkte Zuordnung von reduzierten Werten zu Bereichen, in denen eine ärztliche Behandlung möglich wäre (z.B. eine Unterscheidung zwischen Schmerzen oder Funktionseinschränkung aus anderen Gründen).

Der EORTC QLQ-C30 (European Organization for Research and Treatment of Cancer, Quality-of-Life-Questionnaire, Core, 30 Questions) wurde ursprünglich im onkologischen Bereich entwickelt [1]. Er deckt jedoch als Kernfragebogen mit nur 30 Fragen nicht etwa krebsspezifische Probleme, sondern sehr genau die von uns gewünschten Gebiete ab. Die 30 Fragen erscheinen dabei sehr gut verständlich. Tabelle 3 zeigt die enthaltenen Dimensionen:

<table>
<thead>
<tr>
<th>Funktions-Skalen</th>
<th>Symptom-Skalen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Körperfliche Funktion</td>
<td>Müdigkeit</td>
</tr>
<tr>
<td>Rollenfunktion</td>
<td>Übelkeit und Erbrechen</td>
</tr>
<tr>
<td>Emotionale Funktion</td>
<td>Schmerzen</td>
</tr>
<tr>
<td>Kognitive Funktion</td>
<td>Dyspnoe</td>
</tr>
<tr>
<td>Soziale Funktion</td>
<td>Schlafstörungen</td>
</tr>
<tr>
<td>Globale Lebensqualität</td>
<td>Appetitverlust</td>
</tr>
<tr>
<td>und allgemeiner</td>
<td>Obstipation</td>
</tr>
<tr>
<td>Gesundheitszustand</td>
<td>Diarrhoe</td>
</tr>
<tr>
<td></td>
<td>Finanzielle Auswirkungen</td>
</tr>
</tbody>
</table>

Krebsspezifische Probleme werden beim QLQ-C30 durch eine Reihe von Zusatzmodulen erfasst, davon in unterschiedlichen Stadien der Validierung z.B. die Module für Bronchiualkarzinom (LC-13), Brustkrebs (BR-23), Kopf und Hals (H&N35), Öosphagus-Karzinom (OES18), Ovarial-Karzinom (OV28), Zervix-Karzinom (CX24) und Satisfaction with Care (PATSAT32). Der Fragebogen wurde von Anfang an im Hinblick auf gute Übersetzbarkeit entwickelt; der Kernfragebogen liegt derzeit in 49 Sprachen vor [145]. Der Kernfragebogen wurde 1993 veröffentlicht und weltweit in über 3.000 klinischen Studien eingesetzt [1, 145]. Angaben aus der psychometrischen Validierung und methodische Anleitungen sind verfügbar [35, 113]; darüber hinaus liegen Referenzdaten aus verschiedenen Studienkollektiven vor [5, 8, 25, 37]. Obwohl die meisten Untersuchungen an Patienten mit onkologischen Erkrankungen durchgeführt wurden, liegen insbesondere Daten aus Befragungen gesunder Populationen und internistischer Patienten vor [16, 36, 55, 56, 68, 107, 109]. Durch die Verwendung von allgemeinen Lebensqualitätsfragebögen werden...
die erhobenen Daten mit anderen Studien vergleichbar, was auch Snoek in seinem 2000 erschienenen Artikel zur Messung von Lebensqualität bei Diabetikern empfiehlt [110].

2.1.3 Generierung eigener diabetesbezogener Fragen

Phase 1: Generieren von Items

Interviews mit Experten: In Gesprächen mit drei Allgemeinmedizinern und Mitgliedern der Abteilungen Allgemeinmedizin der Universitäten Heidelberg und Göttingen, einer Diabetologin und zwei Vertretern der AOK wurden weitere relevante Fragen gesammelt.

Der Fragebogen sollte die 30 Fragen des QLQ-C30 und 7 Fragen zu soziodemographischen Daten enthalten. Aus dem Pool eigener, krankheitsbezogener Fragen wurden 24 Fragen in 4 Kategorien ausgewählt, und zwar zu:

- Typ, Dauer, Therapie und Einstellung des Diabetes mellitus: 7 Fragen;
- Größe, Gewicht (im Hinblick auf BMI), Blutzucker (BZ und \(\text{HbA}_{1c} \)), Blutdruck und Cholesterin: 6 Fragen;
- Teilnahme an Schulungen: 1 Frage;
- Inanspruchnahme von Hausarzt / Facharzt / Klinik sowie Zufriedenheit mit der Betreuung: 10 Fragen.

Im Hinblick auf die geplante computergestützte Auswertung des Fragebogens wurden geschlossene Fragen bevorzugt, bei denen eine Antwortmöglichkeit angekreuzt werden konnte. Ergänzend wurden einzelne

Phase 3: Überarbeitung des Fragebogens und Prüfung an einer weiteren Patientengruppe: Die Ergebnisse des ersten Testlaufs wurden wieder in semistandardisierten Gesprächen mit den drei allgemeinmedizinisch tätigen Hausärzten und der Diabetologin erörtert. Es wurde keine Frage gestrichen, jedoch wurden die Formulierungen einzelner Fragen überarbeitet. In Bezug auf Diabetes mellitus wurde noch ergänzt:

- Häufigkeit von und Zufriedenheit mit stationärer Behandlung: 2 Fragen;
- allgemeine Zufriedenheit mit der medizinischen Behandlung des Diabetes mellitus: 1 Frage.

Zur Beurteilung der Befragung selbst wurden Fragen hinzugefügt in den Kategorien:

- Akzeptanz der Briefbefragung: 3 Fragen;
- Gründe für die Nichtteilnahme: 1 Frage.

Die resultierende Version wurde noch einmal 20 Patienten vorgelegt, es ergaben sich keine weiteren Veränderungen.

2.2 Vorbereitung und Durchführung der Befragung

2.2.1 Kooperation mit der AOK

Die Befragung wurde so organisiert, dass die AOK Adressen eines Patientenkollektivs lieferte sowie Ausdruck, Versand und Scannen der eingehenden Fragebögen übernahm. Die Aufbereitung der Patientenadressen, Pseudonymisierung, Auswahl einer Stichprobe, Definition des Inhalts und Generierung der Druckvorlagen für die Fragebögen sowie die Auswertung der gescannten Fragebögen wurde im Rahmen
Erstellen einer Adressdatenbank mit allen 4642 Diabetikern

Randomisierte Auswahl von 199 Adressen

Erstellung der 199 + 1 Serienbriefe für die Pilotstudie

Druck und Versand im Hause der AOK

Ausfüllen und zurücksenden durch Patienten an die AOK

Scannen im Hause der AOK und Versand auf CD an Doktorandin

Aufbereitung der Scans und computerunterstützte Auswertung der Scans

Manuelle Prüfung der Qualität der computerunterstützten Erkennung

Datenexport in Statistiksoftware und statistische Auswertung

Abbildung 2: Graphische Darstellung des Ablaufs der Pilotbefragung

der Machbarkeitsstudie von der Doktorandin durchgeführt. Mit dem entwickelten technischen Verfahren ist jedoch prinziell eine weitergehende Trennung der letztgenannten Arbeitsschritte in der Weise möglich, dass alle Adressdaten bei der AOK, Pseudonymisierungsschlüssel bei einem unabhängigen Dritten und Inhalte der Fragebögen beispielsweise in der auswertenden Forschungsabteilung verbleiben können.

Der Erfassungszeitraum der Befragung erstreckte sich vom Versenden der Fragebögen im Juli 2003 über zwei Wochen Rücklaufzeit. Die gescannten Antwortbögen wurden Ende August zur weiteren Auswertung von der AOK an die Doktorandin zurückgeschickt.
2.2.2 Patientenauswahl, Erstellung einer Adressdatenbank

Die EDV-Abteilung der AOK Stuttgart identifizierte unter ihren Versicherten in der Testregion für die Einführung des DMP Diabetes im Raum Pforzheim und Enzkreis 4.642 Patienten, denen Antidiabetika verordnet worden waren.

Da der Postversand von Fragebögen an diese Gruppe alleine schon Portokosten in der Größenordnung von 15.000 Euro (B4 Brief hin und zurück je 1,44 Euro) verursacht hätte, jedoch nur viel geringere finanzielle Mittel zur Verfügung standen, wurde zunächst die Durchführung einer Machbarkeitsstudie mit einer Befragung von 199 Patienten vereinbart.

Hierfür wurde ein Verfahren entwickelt, bei dem die Adressdaten der Patienten bei der AOK verbleiben können und die Mischung mit den Fragebogen-Inhalten zu druckbaren Serienbriefen auf einem Rechner vor Ort erfolgt:

- Die Tabelle wurde in ein für die Serienbrief-Erstellung erforderliches Format - Comma Separated Values, CSV - überführt. Da die Inhalte der Tabellenfelder nicht vollständig homogen strukturiert waren, erfolgte eine Nachbearbeitung im Hinblick auf Formatierung und Belegung der einzelnen Felder.
- Im Hinblick auf die Pseudonymisierung wurden eine eindeutige, fortlaufende Patientennummer und anstelle des Geburtsdatums das zum Stichtag 26.06.2003 auf zwei Nachkommastellen genau berechnete Alter der Patienten in die Tabelle eingefügt. Die resultierende Tabelle stellt den Pseudonymisierungsschlüssel dar, sie kann in zukünftigen Befragungen auch bei einem unabhängigen Dritten hergestellt und aufbewahrt werden.

2.2.3 Vorbereitung der Serienbrief-Vorlage

Getrennt von den Adressdaten wurde mit dem Textverarbeitungsprogramm \LaTeX{} [147] eine Serienbrief-Vorlage im \LaTeX{}-Format [70, 75] mit den nachfolgend aufgezählten Bestandteilen erstellt:

- Seite 1: Anschreiben mit Platzhalter für die Patientenanschrift und der Anweisung, die Seite 1 vor dem Zurücksenden zu entfernen;
- Seite 2: Rücksendeanschrift und graphische Markierungsbeispiele, sowie die wiederholte Anweisung, die Seite 1 vor dem Zurücksenden zu entfernen;
- Seite 3: Fragebogen zu soziodemographischen Daten;
- Seite 4 bis 7: EORTC QLQ-C30 Lebensqualitätsfragebogen;
- Seite 8 bis 10: spezifische Ergänzungsfragen zu Diabetes mellitus;
- Seite 11: Fragen zur Befragung (im Folgenden: “Metafragen”).
Jede Seite enthielt einen Barcode, anhand dessen die Auswertungssoftware die anzuwendenden Felddefinitionen auswählen konnte und einen Platzhalter für einen dynamisch erzeugten Barcode mit der pseudonymisierten Patientennummer.

Zur Abstimmung von Inhalt und Layout wurden die Fragebögen mehrfach unter den Beteiligten zirkuliert und angepasst.

Unterschriften und Logos für das Patientenanschreiben wurden bereits als TIFF- (Tagged Image File Format) oder BMP- (Bitmap) Datei angeliefert oder entsprechend gescannt. Mit dem Bildverarbeitungsprogramm GIMP (GNU Image Manipulation Program; GNU=GNU is not UNIX) wurden sie zurechtgeschnitten, als EPS- (Encapsulated PostScript) Dateien gespeichert und schließlich in PDF- (Portable Document Format) Dateien konvertiert.

Zur Seitenidentifikation wurden Anschriften und Fragebogenteile mit Buchstabenkürzeln und der Seitennummer folgendermaßen gekennzeichnet: CDMANS01, CDMADR02, CDMSOZ03, CDMQLQ04, CDMQLQ05, CDMQLQ06, CDMQLQ07, CDMEDM08, CDMEDM09, CDMEDDM10. Jede Seite enthielt unterhalb der Fußzeile links einen entsprechenden Barcode, der mit dem Programm bar (siehe Anhang) im Code 3/9 erzeugt und mit 6.000 x 100 Pixeln in eine PostScript (PS) Datei ausgegeben wurde. Nach Einbindung in die Serienbrief-Vorlage im Format 9 x 0,2 cm war der Barcode groß genug, um auch mit 100 dpi noch erkannt werden zu können. In einem Testlauf wurde jedoch festgestellt, dass ausgefüllte Fragebögen vom Scanner gelegentlich leicht gegen die Horizontale geneigt eingezogen wurden, wodurch besonders für lange Barcodes ein Erkennungsfeld mit größerer vertikaler Reserve benötigt würde und die Zuverlässigkeit der Erkennung abnahm. Die entsprechenden Barcodes wurden deshalb auf die Seitenzahl alleine verkürzt: 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B.

Jede Seite enthielt weiterhin unterhalb der Fußzeile rechts einen Platzhalter für eine numerische Patientenidentifikation (vier Stellen, von 0000 bis 4.642). Dieser Code wurde vom Skript zur Serienbrief-Erzeugung dynamisch (also für jeden erzeugten Serienbrief bei Bedarf) mit 1.000 x 100 Pixeln als PDF-Datei generiert und im Format 4,5 x 0,2 cm in die resultierende PDF-Datei ausgegeben. Um Datenverluste durch möglicherweise nicht mehr automatisch erkennbare Barcodes mit der Patientenidentifikation zu vermeiden, wurde die Patientenidentifikations-Nummer zusätzlich auf jeden Bogen lesbar links neben der Seitennummer aufgedruckt.

Das beschriebene System der Barcodes für Seiten- und Patientenidentifikation erlaubt es, Scan-Ergebnisse automatisch zu verarbeiten und patientenweise zusamm zu führen, selbst wenn die einzelnen Seiten der eingehenden ausgefüllten Fragebögen in unkontrollierter Weise vermischt zum Scanner gelangen.

2.2.4 Serienbrief-Dateien generieren und versenden

Die verschiedenen Bausteine zum Erstellen der Serienbriefe wurden mit zwei in Perl geschriebenen Programmen, **excel_csv_preprocessor.pl** und **serienbrief_generator.pl**, die von einem Bash-Skript **erzeuge_serienbrief.sh** (siehe Anhang) aufgerufen wurden, verarbeitet. Dabei wurde für jeden Eintrag der Adressdatei **ADRESSEN.CSV** entsprechend der Vorlage **BRIEFVLG.TEX** eine PDF-Datei erzeugt. In dieser PDF-Datei waren für jeden Brief die Felder für Anschrift und Anrede sowie der Barcode rechts unten für die numerische Patienten-ID entsprechend den Daten aus **IDADDR.CSV** ausgefüllt.

Die resultierenden PDF-Dateien wurden bei der AOK ausgedruckt. Die so erzeugten Anschriften und Fragebögen wurden ebenfalls dort verpackt und mit beigelegtem Rückumschlag versandt.
Im Rahmen des Testlaufs wurden auch die zu erwartenden Portokosten ermittelt. Die von der Post angebotenen Tarife erwiesen sich als kompliziert. Anpassung durchdrucken (nach PLZ-Bereichen sortiert usw.) würde sich erst ab größeren Stückzahlen lohnen und die Vertraulichkeit des Inhalts wäre nicht gewährleistet, da eine Massensendung zu Prüfzwecken geöffnet werden darf. Um die portofreie Rücksendung der Antworten möglichst einfach zu gestalten, ersetzte schließlich ein Aufdruck “Antwort - Gebühr bezahlt Empfänger” im Adressfeld des Deckblatts für die Rücksendung ein aufwendiges Stempeln der Umschläge.

2.2.5 Ausfüllen des Fragebogens durch Patienten

Das Anschreiben informierte die Patienten über Zweck und Initiatoren der Untersuchung und bat sie um ihre Teilnahme. Es wies explizit darauf hin, dass die Befragung anonymisiert durchgeführt wurde und auch ein leer zurückgesandter Fragebogen mit alleiniger Beantwortung der Frage „Gründe für Nichtteilnahme“ auf der letzten Seite für die Auswertung der Fragebögen hilfreich sei. Die Patienten wurden gebeten, die Seite mit ihrer Anschrift zu entfernen. Die nächste Seite diente einerseits als Deckblatt für die Rücksendung, andererseits fanden sich dort Hinweise zum Ausfüllen des Fragebogens mit Beispielen gut und weniger gut auswertbarer Markierungen.

Die Patienten erhielten den Brief, lasen und entfernten die erste Seite mit dem an sie persönlich adressierten Anschreiben, füllten den Fragebogen aus und verpackten ihn im beigelegten Rückumschlag so, dass die auf Seite 2 gedruckte Rückanschrift im Sichtfenster erschien.

Die Rücksendung enthielt demnach nur anonymisierte Daten.

Durch die auf allen Seiten aufgedruckten Barcodes ist jedoch auch eine korrekte Verarbeitung von ungeordnet eingehenden Scans möglich.

2.2.6 Verarbeitung der gescannten Fragebögen

Eingehende ZIP-Dateien wurden zunächst automatisiert entpackt, die mehrere Seiten enthaltenden TIFF-Dateien wurden in TIFF-Dateien mit jeweils einer einzelnen Seite zerlegt und das noch komprimierte TIFF-Format wurde in ein unkomprimiertes TIFF-Format überführt.

Bei der Verarbeitung von mehreren unterschiedlichen Fragebogenseiten kann die Auswahl der jeweils zu verwendenden Erkennungsvorlage automatisch anhand eines (in unserem Fall links unten) eingedruckten

2.2.7 Testläufe über verschiedene Schritte - überschener Fehler im Fragebogen

Der genannte Fehler wurde unter anderem auch deshalb übersehen, weil bei diesem letzten Test über den gesamten Ablauf ein Fehler des verwendeten Scanners die Aufmerksamkeit vom inhaltlichen auf den technischen Bereich lenkte: In sämtlichen Scans erschien eine ein Pixel breite senkrechte weiße Linie, welche drohte, sowohl die Barcodes zur Seitenidentifikation als auch die im entsprechenden Bereich liegenden Antwortfelder unbrauchbar zu machen. Der Scanfehler wurde der AOK mitgeteilt, konnte jedoch bis zur Durchführung der Patientenbefragung nicht beseitigt werden.

2.2.8 Statistische Auswertung

Nach der Auswertung der digitalisierten Fragebögen mit der Optical Mark Recognition Software Remark Office wurden die gewonnenen Daten zunächst an MS Excel exportiert und anschließend mit MS Excel Version 97 und SPSS Version 12 ausgewertet:

- **Ablauf und Qualität der Datenerhebung deskriptiv:**
 - Patientenauswahl: Alter (Mittelwert, Standardabweichung, dargestellt als Histogramme und Tabelle), Ortsverteilung (absolute und relative Häufigkeiten tabellarisch)
 - Rücklauf und Vollständigkeit der Fragebögen (absolute Häufigkeiten als Histogramm)

- **Ergebnisse der Befragung deskriptiv: absolute und relative Häufigkeiten**
 - der erhobenen soziodemographischen Daten
 - der erhobenen diabetesbezogenen Fragen, sowie Histogramme zu Größe, Gewicht und BMI
 - der erhobenen Metafragen

- **Berechnung der Skalen des QLQ-C30 mit Mittelwert, Standardabweichung, Minimum, Maximum sowie Quartilen und Cronbach’s α [24] als Maß für die Skalenreliabilität**

- **Vergleich der Mittelwerte der erhobenen Lebensqualitätsskalen mit Referenzpopulationen**

- **Beziehungen zwischen den Daten der einzelnen Fragebogenteile (Korrelation: Spearman’s ρ)**
Bei der Auswertung des QLQ-C30 wurden die Scores für die einzelnen Skalen entsprechend der Leitlinien transformiert. Fehlende Werte wurden analog zur Handhabung bei Studien der EORTC so behandelt, dass ab 50% ausgefüllter Fragen eine Skala berechnet wurde [33, 68]. Diese Auswertungsregel setzt voraus, dass die Werte der fehlenden Items dem Durchschnitt der ausgefüllten Items der jeweiligen Skala entsprechen.
3 Ergebnisse

3.1 Ablauf der Erhebung und der Datenaufbereitung

Die Erhebung der Daten erfolgte per Briefbefragung und halbautomatisierter Auswertung der eingehenden Fragebogen mittels Scanner und Textverarbeitungsprogramm.

3.1.1 Technische Umsetzung

Entsprechend der Ergebnisse dieses Probelaufs wurde eine umfassende SOP (Standard Operating Procedure, detaillierte Arbeitsanweisung) für den Ausdruck der Fragebogen erstellt und den Beteiligten zugeschickt.

Optimierung der Fragebogen: Vor der Versendung der Fragebogen an die Patienten wurde zur besseren automatisierten Lesbarkeit der Antwortfelder der Abstand zwischen den Antwortfeldern und den Antwortfeld-Beschriftungen vergrößert.

In der letzten Kontrollstufe der Fragebogen wurde entschieden, auch für die letzten beiden Fragen des QLQ-C30 das Antwortfeld “weiß nicht” hinzuzufügen. Beim entsprechenden Arbeitsschritt wurde ver- schentlich mit dem Format auch der Wortlaut von Frage 29 auf Frage 30 kopiert. Dieser Fehler blieb bis zum Versand der Bögen an 199 Patienten unbemerkt.

Durchführung der Patientenbefragung: Das Rendering von 200 Serienbriefen zu je 11 Seiten erforderte auf einem Dual Pentium II 350 Rechner unter Linux ca. 20 Minuten. Die Fragebogen wurden entsprechend der SOP bei der AOK gedruckt und Ende Juli 2003 an 199 Patienten und die Doktorandin verschickt.

Der Rücklauf der Fragebogen an die AOK erfolgte innerhalb von vier Wochen nach der Versendung. Scans der ausgefüllten Bögen wurden von der AOK auf zwei CDs an die Doktorandin geschickt, eine Nachsendung von fünf weiteren, verspätet eingetroffenen Fragebogen erfolgte als E-Mail mit pseudonymisiertem Inhalt. Insgesamt trafen 70 *.tif-Dateien mit jeweils 9 gescannten Seiten (in einem Fall fehlte die letzte Seite) ein, da die eingehenden Rücksendungen bei der AOK am Stück verarbeitet wurden. Diese
verbundene Verarbeitung aller Fragebogenseiten eines Patienten wird vom verwendeten Verfahren nicht vorausgesetzt, ist aber aufgrund des Umschlag für Umschlag eintreffenden Rücklaufs gut praktikabel. Die Entfernung der ersten Seite mit persönlicher Anschrift durch die Patienten erfolgte in allen Fällen.

Nachbearbeitung der eingegangenen Fragebögen: Zunächst erfolgte die oben beschriebene Konvertierung der eingegangenen Scan-Daten in unkomprimierte TIFF-Dateien mit einzelnen Seiten.

Automatisierte Auswertung der Fragebögen: Die gesamte Auswertung von Markierungen und Freitextangaben erfolgte über ca. 10 Wochen. Der Netto-Zeitaufwand betrug dabei ca. 50 Stunden (neben klinischer Haupttätigkeit der Doktorandin), einschließlich der halbautomatischen Verarbeitung handschriftlicher Angaben auf den Fragebögen und eines nur im Rahmen der Machbarkeitsstudie zur Beurteilung der Erkennungsleistung erforderlichen vollständigen Reviews der automatischen Erkennung.

Fehlererkennung: Bei der Erkennung von Antworten liefert Remark Office bei nicht oder unsicher erkannten Werten farbig markierte Tabelleneinträge. Bei Auswahl eines solchen Tabellenfeldes wird der zugehörige Bildausschnitt aus dem jeweiligen Fragebogen-Scan angezeigt; somit kann sehr einfach eine Kontrolle und gegebenenfalls eine manuelle Korrektur erfolgen. Dabei lassen sich Grenzwerte für die Unsicherheit einstellen, ab welchen eine entsprechende Markierung vergeben bzw. die automatische Erkennung nicht durchgeführt werden soll.

Die Fehlerquoten im Einzelnen:

Nicht erkannter PID-Barcode: 170/629 (27%).

Unsicher erkannter PID-Barcode: 39/629 (6%).

Nicht erkannter Seitennummer-Barcode: 13/629 (2%; Vorbedingung für die korrekte Auswahl der Vorlage zur Erkennung von Antworten auf den Fragebogenseiten).

Unsicher erkannter Seitennummern-Barcode: 12/629 (2%).

Alle als “unsicher erkannt” farblich hervorgehobenen Werte erwiesen sich bei der Nachkontrolle als tatsächlich korrekt automatisch erkannt.

Durch den Ausdruck der PID in Klarschrift über die entsprechenden Barcodes konnten manuell alle Bögen zugeordnet werden, bei denen der Barcode nicht automatisch erkannt wurde. Wenn dies auftrat, wurde die entsprechende Information ebenfalls manuell eingegeben.

Die Erkennung der markierten Antwortfelder funktionierte fehlerfrei. Hier ist anzumerken, dass die Software auch unzulässige Mehrfachantworten sowie fehlende Antworten farblich hervorhebt.
3.1.2 Datenexport und Zusammenführung

Beim Export der vorhandenen Daten, dem Import in MS Excel und SPSS sowie der Zusammenführung von Daten aller Fragebogen-Seiten einzelner Patienten sowie von Geburtsdatum, Geschlecht, PLZ und Ort ergaben sich keine technischen Schwierigkeiten.

3.1.3 Zeitlicher und finanzieller Aufwand der Befragung

Zur Herstellung und Auswertung wurde Standardsoftware mit einem Anschaffungspreis (kommerzielle Lizenz) von weniger als 2.500 Euro verwendet, wovon der größte Anteil auf das Statistikpaket SPSS entfällt.

Für Erzeugung und Auswertung der Fragebögen kamen übliche PCs zum Einsatz. Beim verwendeten Scanner der AOK handelte es sich jedoch um ein Hochleistungsgerät mit einer Scanleistung von ca. 60 Seiten pro Minute.

Der zeitliche Aufwand für Entwicklung projektspezifischer Software und SOPs, Herstellung und Verarbeitung von Serienbriefen, Testläufe und die Auswertung umfasste ca. 300 Stunden.

Der tatsächlich ausschließlich für die Studie angefallene finanzielle Aufwand umfasste Fahrtkosten, Kosten für Druck, Versand und Rückporto und beschränkte sich auf ca. 500 Euro.

3.2 Inhalt des Datenrücklaufs

3.2.1 Patientenauswahl, Fragebogenversand und Rücklauf

Patientenauswahl: Die AOK lieferte eine Tabelle mit Datensätzen von 4.642 Patienten (a, Abb. 3). Für das erste Anschreiben wurden daraus 199 Patienten zufällig ausgewählt (b). Der Rücklauf (c) umfasste 70 Fragebögen, also 35% der ausgesandten Fragebögen. Um die Repräsentativität der Stichproben (b) und (c) für die Gesamtpopulation (a) abschätzen zu können, werden alle drei Gruppen im Folgenden anhand bekannter Parameter einander gegenübergestellt.

Altersverteilung: Die Altersverteilung der drei genannten Gruppen ist in Histogrammen in Abbildung 3 wiedergegeben. Mittelwert und Standardabweichung des Alters für jede Gruppe zeigt Tabelle 4.
(a) Alle von der AOK ausgewählten Patienten

(b) Angeschriebene Patienten

(c) Antwortende Patienten

Abbildung 3: Altersverteilung der Gruppen a bis c
Tabelle 4: Alter der Patientengruppen im Vergleich

<table>
<thead>
<tr>
<th>Patientengruppe</th>
<th>Alter n</th>
<th>Mittelw ± Stabw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle von der AOK ausgewählten Patienten (a)</td>
<td>4.642</td>
<td>68,0 ± 13,87</td>
</tr>
<tr>
<td>Nicht angeschriebene Patienten</td>
<td>4.443</td>
<td>68,0 ± 13,82</td>
</tr>
<tr>
<td>Angeschriebene Patienten (b)</td>
<td>199</td>
<td>67,5 ± 15,01</td>
</tr>
<tr>
<td>Antwortende Patienten (c)</td>
<td>70</td>
<td>68,1 ± 10,26</td>
</tr>
</tbody>
</table>

(Mittelw = arithmetisches Mittel; Stabw = Standardabweichung)

Tabelle 5: Verteilung der Patienten über Postleitzahlenbereiche (1. Stelle)

<table>
<thead>
<tr>
<th>PLZ</th>
<th>Alle Patienten n</th>
<th>%</th>
<th>Angeschriebene n</th>
<th>%</th>
<th>Antwortende n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4.586</td>
<td>98,8%</td>
<td>196</td>
<td>98,5%</td>
<td>68</td>
<td>97,1%</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>0,3%</td>
<td>0</td>
<td>0,0%</td>
<td>0</td>
<td>0,0%</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>0,2%</td>
<td>0</td>
<td>0,0%</td>
<td>0</td>
<td>0,0%</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0,2%</td>
<td>0</td>
<td>0,0%</td>
<td>0</td>
<td>0,0%</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>0,1%</td>
<td>2</td>
<td>1,0%</td>
<td>2</td>
<td>2,9%</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0,1%</td>
<td>1</td>
<td>0,5%</td>
<td>0</td>
<td>0,0%</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0,1%</td>
<td>0</td>
<td>0,0%</td>
<td>0</td>
<td>0,0%</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>0,1%</td>
<td>0</td>
<td>0,0%</td>
<td>0</td>
<td>0,0%</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0,1%</td>
<td>0</td>
<td>0,0%</td>
<td>0</td>
<td>0,0%</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0,0%</td>
<td>0</td>
<td>0,0%</td>
<td>0</td>
<td>0,0%</td>
</tr>
</tbody>
</table>

Tabelle 6: Verteilung der Patienten über die 10 am häufigsten repräsentierten Ortschaften

<table>
<thead>
<tr>
<th>Ort</th>
<th>Alle Patienten</th>
<th>Angeschriebene</th>
<th>Antwortende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
</tr>
<tr>
<td>Pforzheim</td>
<td>1.692 (36,4%)</td>
<td>71 (35,7%)</td>
<td>23 (32,9%)</td>
</tr>
<tr>
<td>Mühlacker</td>
<td>431 (9,3%)</td>
<td>13 (6,5%)</td>
<td>5 (7,1%)</td>
</tr>
<tr>
<td>Straubenthal</td>
<td>150 (3,2%)</td>
<td>12 (6,0%)</td>
<td>4 (5,7%)</td>
</tr>
<tr>
<td>Königshof-Stein</td>
<td>130 (2,8%)</td>
<td>6 (3,0%)</td>
<td>3 (4,3%)</td>
</tr>
<tr>
<td>Remchingen</td>
<td>127 (2,7%)</td>
<td>4 (2,0%)</td>
<td>3 (4,3%)</td>
</tr>
<tr>
<td>Niefern-Öschelbr.</td>
<td>123 (2,6%)</td>
<td>3 (1,5%)</td>
<td>3 (4,3%)</td>
</tr>
<tr>
<td>Knittlingen</td>
<td>120 (2,6%)</td>
<td>7 (3,5%)</td>
<td>2 (2,9%)</td>
</tr>
<tr>
<td>Birkenfeld</td>
<td>112 (2,4%)</td>
<td>5 (2,5%)</td>
<td>1 (1,4%)</td>
</tr>
<tr>
<td>Ispringen</td>
<td>111 (2,4%)</td>
<td>8 (4,0%)</td>
<td>4 (5,7%)</td>
</tr>
<tr>
<td>Neuenburg</td>
<td>109 (2,3%)</td>
<td>3 (1,5%)</td>
<td>1 (1,4%)</td>
</tr>
</tbody>
</table>

1) Absolute Häufigkeiten; zur vollen Patientenzahl bzw. 100% fehlen die Patienten aus den restlichen Ortschaften.

Abbildung 4: Anzahl der gültigen Antworten, Abszisse nicht linear skaliert.

3.2.2 Soziodemographische Daten

Aus Freitextfeldern oder Randbemerkungen auf den Bögen übernommene Zitate werden kursiv und in Anführungszeichen wiedergegeben, jedes Zitat stammt von einem einzelnen Patienten.

Geschlecht: Aus den Daten der AOK ging hervor, dass 27 Patienten (38,6%) und 43 Patientinnen (61,4%) an der Befragung teilnahmen. Nach Angaben der Patienten waren 22 Patienten (31,4%) männlich und 31 (44,3%) weiblich. 17 Patienten (24,3%) machten keine Angabe.
Alter: Das Alter aller Teilnehmerinnen und Teilnehmer betrug im Mittel 68,1 ± 10,26 Jahre. Männer waren im Mittel 66,2 ± 8,9 Jahre alt (46,5 bis 89,4 Jahre), Frauen waren im Mittel mit 69,3 ± 10,9 Jahren (40,6 bis 94 Jahre) etwas älter (siehe auch Abbildung 3 sowie Tabelle 4).

Familienstand: 32 Patienten (45,7%) waren verheiratet / in Partnerschaft lebend. 4 Patienten (5,7%) waren geschieden / getrennt lebend. 14 Patienten (20%) waren verwitwet und 7 Patienten (10%) ledig. 13 Patienten (18,6%) machten keine Angabe.

Schulabschluss: 6 Patienten (8,6%) hatten keinen Schulabschluss, 42 Patienten (60%) gaben einen Hauptschulabschluss an, 8 Befragte (11,4%) hatten einen Realschulabschluss. 14 Patienten (20%) machten keine Angabe. Zusätzlich war den Freitextfeldern zu entnehmen: “4 Jahre Kriegszeit. 1945” bei einem Patienten, der keine Antwort gegeben hatte und “Hauswirtschaftsschule” bei einer Patientin mit Haupt- schulabschluss.

Art der Tätigkeit: 6 Patienten (8,6%) waren erwerbstätig (“8 Stunden pro Woche”). 7 Patienten (10%) waren nicht erwerbstätig (“krank”). 42 Befragte (60,0%) gaben Ruhestand an (“Rente”, “EU-Rentnerin”). 15 Patienten (21,4%) machten keine Angabe.

Art der Tätigkeitsausübung: 8 Patienten (11,4%) waren angestellt (aus den Freitextfeldern: “Galvaniseurin”). Zwei Patienten aus dieser Gruppe hatten in der vorhergehenden Frage lediglich angegeben, dass sie berentet waren - somit bezog sich die jetzt gemachte Angabe am wahrscheinlichsten auf den früheren Beruf. 1 Patient (1,4%) war arbeitslos. 25 Patienten (35,7%) gaben als Beschäftigung “im Haushalt” an (aus den Freitextfeldern: “ev. und im Gemeindehaus”). 5 Patienten (7,1%) waren “anders” tätig (“Rentnerin”, “i.R.”, “Arbeiter”, “Rente”). 31 Patienten (44,3%) machten keine Angabe (aus den Freitextfeldern: “nein”).

Tätigkeitsbereich: 6 Patienten (8,6%) waren im Bereich Dienstleistung tätig, 3 (4,3%) in der Produktion, 1 Patient (1,4%) kreuzte “anderswo” an (aus dem Freitextfeld: “i.R.”). 60 Patienten (85,7%) machten keine Angabe (aus den Freitextfeldern: “Hausfrau”, “Haushalt”, “irgendwo, da zu alt und schwach”, “Ruhestand”, “Rentner”, “Als Arbeiter”).

Verantwortung im Betrieb: Diese Frage beantworteten 6 Patienten (8,6%) mit “ja”, 28 (40,0%) mit “nein”. 3 Patienten (4,3%) kreuzten “keine Angabe” an (letztere waren im Ruhestand). 33 Patienten (47,1%) machten keine Angabe.

3.2.3 Lebensqualität - QLQ-C30

Die möglichen Ergebnisse liegen für jede Skala zwischen 0 und 100, jedoch sind die Auflösungen unterschiedlich, da jeweils eine unterschiedliche Anzahl von Fragen mit unterschiedlichen Abstufungen der Antwortmöglichkeiten in das Ergebnis eingehen. Bei den Funktionen entspricht ein Ergebnis von 100 der vollen Funktion, bei den Symptomen entspricht ein Ergebnis von 100 der maximalen Symptomausprägung. Die einzelnen Skalen können grundsätzlich berechnet werden, wenn mindestens 50% der dazugehörigen
Claudia Preuß
Lebensqualität bei Diabetes mellitus
Ergebnisse

Tabelle 7: Abkürzungen für Skalenbezeichnungen des QLQ-C30

<table>
<thead>
<tr>
<th>Funktions-Skalen</th>
<th>Symptom-Skalen</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF Körperliche Funktion</td>
<td>FA Müdigkeit</td>
</tr>
<tr>
<td>RF Rollenfunktion</td>
<td>NV Übelkeit und Erbrechen</td>
</tr>
<tr>
<td>EF Emotionale Funktion</td>
<td>PA Schmerzen</td>
</tr>
<tr>
<td>CF Kognitive Funktion</td>
<td>DY Dyspnöe</td>
</tr>
<tr>
<td>SF Soziale Funktion</td>
<td>SD Schlafstörungen</td>
</tr>
<tr>
<td>QL Globale Lebensqualität</td>
<td>AP Appetitverlust</td>
</tr>
<tr>
<td></td>
<td>OB Obstipation</td>
</tr>
<tr>
<td></td>
<td>DI Diarrhoe</td>
</tr>
<tr>
<td></td>
<td>FI Finanzielle Auswirkungen</td>
</tr>
</tbody>
</table>

Fragen ausgefüllt wurden [33]; in der vorliegenden Arbeit wurde aufgrund eines Druckfehlers jedoch statt der vollständigen globalen Skala “globale Lebensqualität / allgemeiner Gesundheitszustand” lediglich deren erste Komponente erhoben. Frage 29 wurde von 45 Patienten beantwortet, Frage 30 von 41 Patienten, davon bei 5 Patienten beide Fragen um eine benachbarte Antwort (1/7) abweichend.

Deskriptive Statistik und Reliabilität: Die Ergebnisse des QLQ-C30 einschließlich Angaben zur Verteilung zeigt Tabelle 8. Zusätzlich ist aufgeführt, welche Items (Einzelfragen des QLQ-C30, siehe Anhang) zu welcher Ergebnisdimension beitragen sowie Cronbach’s \(\alpha \) [24] als ein Maß für die Reliabilität für alle Skalen mit mehr als einem Item.

Tabelle 8: Deskriptive Statistik und Skalenreliabilität

<table>
<thead>
<tr>
<th>Skala</th>
<th>n</th>
<th>Mittelw ± Stabw</th>
<th>Min</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>Max</th>
<th>Items</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF</td>
<td>54</td>
<td>58,2 ± 30,3</td>
<td>0</td>
<td>40</td>
<td>60</td>
<td>87</td>
<td>100</td>
<td>1...5</td>
<td>0,89</td>
</tr>
<tr>
<td>RF</td>
<td>52</td>
<td>58,7 ± 34,6</td>
<td>0</td>
<td>33</td>
<td>67</td>
<td>100</td>
<td>100</td>
<td>6,7</td>
<td>0,88</td>
</tr>
<tr>
<td>EF</td>
<td>55</td>
<td>53,7 ± 29,3</td>
<td>0</td>
<td>33</td>
<td>58</td>
<td>75</td>
<td>100</td>
<td>21...24</td>
<td>0,87</td>
</tr>
<tr>
<td>CF</td>
<td>55</td>
<td>61,5 ± 32,5</td>
<td>0</td>
<td>33</td>
<td>67</td>
<td>100</td>
<td>100</td>
<td>20, 25</td>
<td>0,82</td>
</tr>
<tr>
<td>SF</td>
<td>54</td>
<td>63,0 ± 31,7</td>
<td>0</td>
<td>33</td>
<td>67</td>
<td>100</td>
<td>100</td>
<td>26, 27</td>
<td>0,93</td>
</tr>
<tr>
<td>QL</td>
<td>47</td>
<td>52,7 ± 31,7</td>
<td>0</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td>29, 30</td>
<td>[0,99]</td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>54</td>
<td>56,1 ± 27,6</td>
<td>0</td>
<td>33</td>
<td>56</td>
<td>100</td>
<td>100</td>
<td>10, 12, 18</td>
<td>0,81</td>
</tr>
<tr>
<td>NV</td>
<td>52</td>
<td>13,5 ± 21,9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>14, 15</td>
<td>0,58</td>
</tr>
<tr>
<td>PA</td>
<td>52</td>
<td>45,8 ± 39,7</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>67</td>
<td>100</td>
<td>9, 19</td>
<td>0,94</td>
</tr>
<tr>
<td>DY</td>
<td>54</td>
<td>43,8 ± 38,3</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>83</td>
<td>100</td>
<td>8</td>
<td>0,94</td>
</tr>
<tr>
<td>SD</td>
<td>53</td>
<td>47,8 ± 37,4</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>67</td>
<td>100</td>
<td>11</td>
<td>0,94</td>
</tr>
<tr>
<td>AP</td>
<td>53</td>
<td>20,1 ± 28,1</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>33</td>
<td>100</td>
<td>10</td>
<td>0,94</td>
</tr>
<tr>
<td>OB</td>
<td>54</td>
<td>24,7 ± 33,8</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>33</td>
<td>100</td>
<td>16</td>
<td>0,94</td>
</tr>
<tr>
<td>DI</td>
<td>55</td>
<td>22,4 ± 33,4</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>33</td>
<td>100</td>
<td>17</td>
<td>0,94</td>
</tr>
<tr>
<td>FI</td>
<td>53</td>
<td>32,6 ± 32,4</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>67</td>
<td>100</td>
<td>28</td>
<td>0,94</td>
</tr>
</tbody>
</table>

Mittelw = Mittelwert; Stabw = Standardabweichung, 25%, 50%, 75% = Quartile.

1) Cronbach’s \(\alpha \). 2) Frage 29 und 30 wurden irrtümlich identisch gedruckt und in fünf Fällen nicht kongruent ausgefüllt.

Abbildung 5: Vergleich der LQ-Messergebnisse verschiedener Populationen

3.2.4 Diabetesbezogene Fragen

Diabetestyp und Dauer der Erkrankung: Bei 4 Patienten (5,7%) handelte es sich um Typ-1-Diabetiker, bei 51 (72,9%) um Typ-2-Diabetiker. Einer der Patienten, die “Typ 1” angaben, kreuzte aber bei der Frage zur Therapie nur Tabletten an, so dass unklar ist, ob er eigentlich Typ-2-Diabetiker ist oder nur vergessen hat, auch Insulin anzukreuzen. In einem Fall (1,4%) wurde “weiß nicht” angekreuzt, der Patient kann aber durch seine ausschließlich mit Tabletten angegebene Therapie den Typ-2-Diabetikern zugerechnet werden. 14 Patienten (20%) gaben keine Antwort. Bei 6 Patienten (8,6%) war DM seit bis zu einem Jahr bekannt, bei 14 Patienten (20,0%) seit bis zu 5 Jahren, bei 16 Patienten (22,9%) seit bis zu 10 Jahren, bei 20 Patienten (28,6%) wurde die Diagnose vor über 10 Jahren gestellt. 14 Patienten (20%) haben diese Frage nicht beantwortet.

Größe, Gewicht, BMI: Die Abbildungen 5 bis 7 zeigen die von den Patienten gelieferten Angaben zu Größe und Gewicht, sowie den daraus jeweils berechneten Body-Mass-Index (BMI). In 55 (78,6%) der 57 (81,4%) ausgefüllten Bögen waren die entsprechenden Angaben enthalten. Der in Abbildung 5 mit
133 cm Körpergröße erscheinende Patient gab an, dass seine beiden Unterschenkel amputiert seien. Die internationale Klassifikation der Adipositas zeigt Tabelle 9 [53].

Abbildung 6: Größe der Patienten; Mittelwert: 166 ± 9,63 cm

Abbildung 7: Gewicht der Patienten; Mittelwert: 80 ± 15,35 kg
Nach der Klassifikation der Adipositas lag ein Patient (1,8%) unterhalb des Normalgewichts, 9 Patienten (16,4%) hatten Normalgewicht. Der größte Teil der Patienten hatte eine Präadipositas: 26 Patienten (47,3%) lagen mit ihrem BMI zwischen 25 und 29,9 kg/m². Eine Adipositas I° fand sich bei 14 Patienten (25,5%), eine Adipositas II° bei drei Patienten (5,5%). Rechnerisch fand sich eine Adipositas III° bei zwei Patienten (3,6%), dies schloss jedoch den Patienten mit Unterschenkelamputation ein.

Blutzuckereinstellung: Tabelle 10 gibt einen Überblick über den Zeitpunkt der letzten Blutzucker- und HbA₁₋₃-Messung.

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Blutzucker</th>
<th>HbA₁₋₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vierteljahr</td>
<td>50</td>
<td>71,4%</td>
</tr>
<tr>
<td>Halbes Jahr</td>
<td>1</td>
<td>1,4%</td>
</tr>
<tr>
<td>Ein Jahr</td>
<td></td>
<td>0,0%</td>
</tr>
<tr>
<td>Über ein Jahr</td>
<td>0</td>
<td>0,0%</td>
</tr>
<tr>
<td>Noch nie</td>
<td>0</td>
<td>0,0%</td>
</tr>
<tr>
<td>Weiß nicht</td>
<td>0</td>
<td>0,0%</td>
</tr>
<tr>
<td>Keine Angabe</td>
<td>18</td>
<td>25,7%</td>
</tr>
</tbody>
</table>

Aus Randnotizen auf den ausgefüllten Fragebögen ging hervor, dass einige Patienten auch täglich ihren
Blutzucker selbst bestimmten (vier Fälle, z.B.: "jeden Tag wird gemessen", "wenn es darauf ankommt messe ich ihn alle zwei Std."). Die Werte lagen bei 10 Patienten (14,3%) unter 126 mg/dl, bei 12 Patienten (17,1%) bis 140 mg/dl, bei 24 Patienten (34,3%) unter 200 mg/dl, bei 4 Patienten (5,7%) über 200 mg/dl. Es gab 3 Mehrfachnennungen (4,3%), die jeweils der höheren genannten Kategorie zugeordnet wurden. Viermal (5,7%) wurde "weiß nicht" angekreuzt, 16 Patienten (22,9%) machten keine Angabe. Sieben Patienten gaben eine Messung an, ohne den BZ-Wert zu kennen (BZ leer bei drei Patienten, "weiß nicht" bei vier Patienten). Drei Patienten trugen einen BZ-Wert ein und ließen das Feld mit der Angabe, wann die Messung stattgefunden habe, frei. Die gemessenen HbA1c-Werte lagen bei 10 Patienten (14,3%) bis 6,5%, bei 16 Patienten (22,9%) bis 8%, bei einem Patienten (1,4%) bis 10%. Zwei Patienten (2,9%) kreuzten "trifft nicht zu" an, 25 Patienten (35,7%) wussten ihren Wert nicht, 16 Patienten (22,9%) machten keine Angabe. Auch hier bestimmten einzelne Patienten ihren Blutzucker selbst: "wenn's mir nicht gut geht, dann messe ich selbst", "täglich".

Blutdruckmessung: Der Blutdruck wurde bei 50 Patienten (71,4%) im letzten Vierteljahr gemessen und bei je 2 Patienten (2,9%) im letzten halben bzw. ganzen Jahr. 16 Patienten (22,9%) machten keine Angabe. Bei 25 Patienten (35,7%) lag der systolische Blutdruck unter 140 mmHg, bei 9 Patienten (12,9%) unter 160 mmHg, bei 11 Patienten (15,7%) unter sowie bei 3 Patienten (4,3%) über 180 mmHg. 6 Patienten (8,6%) kannten ihren Blutdruck nicht. 16 Patienten (22,9%) machten keine Angabe. Auch hier bestimmten einzelne Patienten ihren Blutzucker selbst: "wenn's mir nicht gut geht, dann messe ich selbst", "täglich".

Cholesterinbestimmung: Der Cholesterinwert wurde bei 39 Patienten (55,7%) im letzten Vierteljahr bestimmt, bei 5 Patienten (7,1%) im letzten halben Jahr, bei 2 Patienten (2,9%) im letzten Jahr und bei 5 Patienten (7,1%) vor über einem Jahr. 5 Patienten (7,1%) wussten nicht, wann die letzte Messung erfolgt war und 14 Patienten (20,0%) machten keine Angabe. Die Werte konnten in der folgenden Frage zunächst als "niedrig" (1 Patient; 1,4%), "normal" (28 Patienten; 40%), "hoch" (6 Patienten; 8,6%) und "weiß nicht" (17 Patienten; 24,3%) angegeben werden. Hierzu machten 18 Patienten (25,7%) keine Angabe. Der anschließend abgefragte Wert wurde von 7 Patienten angegeben: 140-160; 151; 212; 220; 230; 235; 242. Nur vier der sieben Patienten, die einen Zahlenwert angaben, hatten sich zuvor für eine Einschätzung entschieden (niedrig/normal/hoch) und ihre Werte korrekt eingeordnet. Ein Patient gab an, "hohe" Cholesterinwerte zu haben, ins Feld für den Zahlenwert schrieb er ein Fragezeichen.

Therapie des Diabetes mellitus: Die Tabellen 11 und 12 zeigen die Therapie der Diabetiker zunächst für die ganze Gruppe der Antwortenden, dann nach Diabetes-Typ und Therapiekombinationen getrennt ausgewertet. Mehrfachnennungen waren bei dieser Frage erlaubt.

Tabelle 11: Die verschiedenen Therapien des Diabetes mellitus bei den Antwortenden

<table>
<thead>
<tr>
<th>Behandlungsart</th>
<th>Angekreuzt</th>
<th>Nicht angekreuzt</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine Behandlung</td>
<td>0(^1)</td>
<td>0,0%</td>
<td>70</td>
</tr>
<tr>
<td>Diät</td>
<td>16</td>
<td>22,9%</td>
<td>54</td>
</tr>
<tr>
<td>Tabletten</td>
<td>34</td>
<td>48,6%</td>
<td>36</td>
</tr>
<tr>
<td>Insulin</td>
<td>33</td>
<td>47,1%</td>
<td>37</td>
</tr>
</tbody>
</table>

\(^1\)Ein Patient hatte sowohl "keine Therapie" als auch "Diät" angekreuzt, er wurde mit zur Diät-Gruppe gerechnet.

Als einfachstes Maß für die Therapieintensität bietet sich die Frage an, ob überhaupt eine Therapie genannt wurde - dies traf für alle antwortenden Patienten zu. Als weiteres Maß für die Therapieintensität
Tabelle 12: Auswertung der Therapie nach Diabetes-Typ

<table>
<thead>
<tr>
<th>Therapie</th>
<th>Diabetes Typ 1</th>
<th>Diabetes Typ 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diät</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Tabletten</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Insulin</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Diät und Tabletten</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Diät und Insulin</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Tabletten und Insulin</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Diät, Tabletten und Insulin</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

1) Typ 1 n=4, davon einer fraglich Typ 1; 2) Typ 2 n=51, dazu ein Patient, der beim Diabetes-Typ zwar “weiß nicht” angab, aber aufgrund seiner Behandlung ohne Insulin zum Typ 2 gerechnet wird.

wurde die Anzahl der verfolgten therapeutischen Ansätze pro Patient gezählt: Einen Therapieansatz hatten 32 der antwortenden Patienten (57,1% der antwortenden), zwei Therapieansätze 21 Patienten (37,5% der antwortenden) und drei Therapieansätze 3 Patienten (5,4% der antwortenden). Die durchschnittliche Anzahl lag bei 1,5 Therapieansätzen pro Patient.

Um einen Parameter mit etwas höherer Differenzierung für spätere Korrelationsauswertungen zu erhalten, wurde ein Parameter für die Therapieintensität gebildet, indem für “Diät” ein Punkt, für “Tabletten” zwei Punkte und für “Insulin” vier Punkte vergeben wurden. Anschließend wurden alle Punkte für jeden Patienten addiert. Auch hier waren alle möglichen Intensitätsstufen zwischen 1 Punkt (nur Diät) und 7 Punkten (Diät + Tabletten + Insulin) vertreten, die durchschnittliche Therapieintensität lag bei 3,9±1,6 Punkten pro Patient.

Teilnahme an Schulungen: 18 Patienten (25,7%) waren nie bei einer Schulung, 18 Patienten (25,7%) haben einmal an einer Diabetikerschulung teilgenommen, 10 Patienten (14,3%) bis dreimal, 7 Patienten (10,0%) über dreimal. Ein Patient (1,4%) kreuzte “weiß nicht” an, 16 Patienten (22,9%) machten keine Angabe. Betrachtet man die Angaben nach Diabetes-Typ getrennt, so waren zwei von insgesamt drei Typ-1-Diabetikern einmal, der dritte nie bei einer Schulung.

Tabelle 13: Häufigkeit von Arztkontakten

<table>
<thead>
<tr>
<th></th>
<th>Ambulant (letzter Monat)</th>
<th>Stationär (letztes Jahr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gar nicht</td>
<td>3</td>
<td>42</td>
</tr>
<tr>
<td>Einmal</td>
<td>26</td>
<td>8</td>
</tr>
<tr>
<td>Bis dreimal</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>Über dreimal</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Keine Angabe</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

Ein Patient, der im letzten Monat mehr als dreimal beim Arzt gewesen war, hatte gleichzeitig “nicht” angekreuzt und handschriftlich “Zu Hause” daruntergeschrieben, er wurde in die Gruppe “über dreimal” aufgenommen.
Die Inanspruchnahme verschiedener ärztlicher Fachgruppen zeigen Tabelle 14 und 15.

Tabelle 14: Zeitpunkt des letzten Besuchs: Hausarzt und Diabetologe

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Hausarzt</th>
<th>Diabetologe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vierteljahr</td>
<td>52 74,3%</td>
<td>15 21,4%</td>
</tr>
<tr>
<td>Halbes Jahr</td>
<td>1 1,4%</td>
<td>4 5,7%</td>
</tr>
<tr>
<td>Jahr</td>
<td>1 1,4%</td>
<td>5 7,1%</td>
</tr>
<tr>
<td>Über ein Jahr</td>
<td>0 0%</td>
<td>3 4,3%</td>
</tr>
<tr>
<td>Noch nie</td>
<td>0 0%</td>
<td>22 31,4%</td>
</tr>
<tr>
<td>Weiß nicht</td>
<td>0 0%</td>
<td>3 4,3%</td>
</tr>
<tr>
<td>Keine Angabe</td>
<td>16 22,9%</td>
<td>18 25,7%</td>
</tr>
</tbody>
</table>

Tabelle 15: Zeitpunkt des letzten Besuchs: Ophthalmologe und Neurologe

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Ophthalmologe</th>
<th>Neurologe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halbes Jahr</td>
<td>36 51,4%</td>
<td>6 8,6%</td>
</tr>
<tr>
<td>Im letzten Jahr</td>
<td>13 18,6%</td>
<td>2 2,9%</td>
</tr>
<tr>
<td>In den letzten zwei Jahren</td>
<td>2 2,9%</td>
<td>5 7,1%</td>
</tr>
<tr>
<td>Vor über zwei Jahren</td>
<td>5 7,1%</td>
<td>7 10,0%</td>
</tr>
<tr>
<td>Noch nie</td>
<td>0 0%</td>
<td>32 45,7%</td>
</tr>
<tr>
<td>Weiß nicht</td>
<td>0 0%</td>
<td>2 2,9%</td>
</tr>
<tr>
<td>Keine Angabe</td>
<td>14 20,0%</td>
<td>16 22,9%</td>
</tr>
</tbody>
</table>

Die Zufriedenheit mit den verschiedenen Fachärzten zeigt Tabelle 16.

Tabelle 16: Zufriedenheit mit den verschiedenen Fachärzten im niedergelassenen Bereich

<table>
<thead>
<tr>
<th>Zufriedenheit</th>
<th>Hausarzt</th>
<th>Diabetologe</th>
<th>Ophthalmologe</th>
<th>Neurologe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Überhaupt nicht</td>
<td>0 0,0%</td>
<td>2 2,9%</td>
<td>1 1,4%</td>
<td>0 0,0%</td>
</tr>
<tr>
<td>Wenig</td>
<td>2 2,9%</td>
<td>2 2,9%</td>
<td>0 0,0%</td>
<td>1 1,4%</td>
</tr>
<tr>
<td>Maßig</td>
<td>10 14,3%</td>
<td>3 4,3%</td>
<td>11 15,7%</td>
<td>5 7,1%</td>
</tr>
<tr>
<td>Sehr</td>
<td>42 60,0%</td>
<td>21 30,0%</td>
<td>43 61,6%</td>
<td>12 17,1%</td>
</tr>
<tr>
<td>Frage trifft nicht zu</td>
<td>0 0,0%</td>
<td>10 14,3%</td>
<td>0 0,0%</td>
<td>16 22,9%</td>
</tr>
<tr>
<td>Weiß nicht</td>
<td>0 0,0%</td>
<td>0 0,0%</td>
<td>1 1,4%</td>
<td>1 1,4%</td>
</tr>
<tr>
<td>Keine Angabe</td>
<td>16 22,9%</td>
<td>32 45,7%</td>
<td>14 20,0%</td>
<td>35 50,0%</td>
</tr>
</tbody>
</table>

Angaben zum Krankenhausaufenthalt: Tabelle 17 zeigt, wie lange der letzte Krankenhausaufenthalt bei den Antwortenden zurücklag; über die Zufriedenheit mit der stationären Behandlung informiert Tabelle 18.

Ab hier fehlten die Angaben eines Patienten, der die letzte Seite des Fragebogens nicht mitgeschickt hat. Da die übrigen Seiten dieses Patienten ebenfalls nicht ausgefüllt waren, wurden sie als "keine Angabe" gewertet. Eventuell angegebene Gründe für die Nichtteilnahme gingen dabei allerdings verloren.
Tabelle 17: Zeitpunkt des letzten Krankenhausaufenthalts

<table>
<thead>
<tr>
<th></th>
<th>Vor einem Vierteljahr</th>
<th>Vor einem halben Jahr</th>
<th>Vor einem Jahr</th>
<th>Vor über einem Jahr</th>
<th>Nie nicht</th>
<th>Keine Angabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl (n)</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>29</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Anteil (%)</td>
<td>10%</td>
<td>4,3%</td>
<td>7,1%</td>
<td>41,4%</td>
<td>12,9%</td>
<td>7,1%</td>
</tr>
</tbody>
</table>

Tabelle 18: Zufriedenheit mit der stationären Behandlung

<table>
<thead>
<tr>
<th></th>
<th>Überhaupt nicht</th>
<th>Wenig</th>
<th>Mäßig</th>
<th>Sehr</th>
<th>Frage trifft nicht zu</th>
<th>Weiß nicht</th>
<th>Keine Angabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl (n)</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>23</td>
<td>6</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>Anteil (%)</td>
<td>0,0%</td>
<td>7,1%</td>
<td>14,3%</td>
<td>32,9%</td>
<td>8,6%</td>
<td>2,9%</td>
<td>34,2%</td>
</tr>
</tbody>
</table>

Angaben zur Zufriedenheit mit der medizinischen Therapie insgesamt: Je ein Patient (je 1,4%) war überhaupt nicht bzw. wenig zufrieden, 17 Patienten (24,3%) waren mäßig zufrieden, 34 Patienten (48,6%) sehr zufrieden mit der medizinischen Betreuung ihres Diabetes mellitus. Ein Patient (1,4%) kreuzte “trifft nicht zu” an, 2 Patienten (2,9%) “weiß nicht”, 14 Patienten (20%) machten keine Angabe.

3.2.5 Metafragen

Meinung der Patienten zur Befragung: 10 Patienten (14,3%) fanden die Tatsache, befragt zu werden, sehr gut, 35 Patienten (50%) gut. 5 Patienten (7,1%) standen der Befragung gleichgültig gegenüber. “Weiß nicht” wurde 6 mal (8,6%) angekreuzt, “schlecht” nie. 14 Patienten (20%) machten keine Angabe.

Benötigte Hilfe beim Ausfüllen: 33 Patienten (47,1%) konnten den Fragebogen ohne Hilfe ausfüllen, 13 Patienten (18,6%) benötigten etwas Hilfe, 12 Patienten (17,1%) viel Hilfe. 12 Patienten (17,1%) machten keine Angabe.

Teilnahme an Folgebefragungen: 32 Patienten (45,7%) wollten wieder angeschrieben werden. 19 Patienten (27,1%) wollten nicht mehr für eine Folgebefragung angeschrieben werden, 8 Patienten (11,4%) war es gleichgültig. 11 Patienten (15,7%) machten keine Angabe.

Gründe für die Nichtteilnahme: 5 Patienten (7,1%) wollten keine Auskunft geben, 2 Patienten (2,9%) fanden den Fragebogen zu kompliziert, 4 Patienten (5,7%) fanden den Fragebogen zu lang. 2 Patienten (2,9%) kreuzten “zu lang” und “zu kompliziert” bzw. “zu lang” und “möchte keine Auskunft geben” gleichzeitig an. 4 Patienten (5,7%) kreuzten “sonstige Gründe” an.

3.3 Beziehungen zwischen den Daten

3.3.1 Korrelationen innerhalb der soziodemographischen Daten

Signifikante Korrelationen innerhalb der soziodemographischen Daten bestanden zwischen Alter und Familienstand mit ρ=0,31, p=0,02 und zwischen Alter und Art der Tätigkeit mit ρ=0,57, p=0,00. Die schwache positive Korrelation deutet an, dass jüngere Patienten eher ledig, ältere eher verwitwet waren. Bei der Art der Tätigkeit besteht ein mäßig starker Zusammenhang mit zunehmendem Alter und Übergang von “erwerbstätig” zu “Ruhestand”.

3.3.2 Korrelationen innerhalb der Ergebnisse zur Lebensqualität

Innerhalb der Fragen zum QLQ-C30 korrelieren

- Funktionsskalen mit anderen Funktionsskalen
- Symptomskalen mit anderen Symptomskalen
- Symptomskalen mit Funktionsskalen

Die Interskalenkorrelationen (bei den Funktionen alle statistisch signifikant p<0,01, bei den Symptomen bis auf einzelne Ausnahmen ebenfalls p<0,01) ergaben folgende Ergebnisse:

Zwischen den Funktionsskalen (körperliche, emotionale, cognitive, soziale Funktion, Rollenfunktion und globale Lebensqualität) lagen die Korrelationen im Bereich von ρ=0,45 (körperliche Funktion und kognitive Funktion) bis ρ=0,78 (körperliche Funktion und Rollenfunktion), wobei meist Werte um ρ=0,5 bis ρ=0,7 erreicht wurden und die stärksten Korrelationen zwischen körperlicher Funktion und Rollenfunktion, emotionaler Funktion und kognitiver Funktion sowie emotionaler Funktion und sozialer Funktion auftraten. Eine positive Korrelation bedeutet unter den Funktionen und Symptomen (Schmerz, Müdigkeit etc.: Tabellen 19 und 20), dass gute Funktionen mit anderen guten Funktionen und starke Symptome mit anderen starken Symptomen zusammen auftraten. Zwischen Funktionen und Symptomen (Tabelle 21) bedeuteten die negativen Korrelationen, dass stärkere Symptome mit schlechteren Funktionen gemeinsam auftraten.

Die Symptomskalen korrelierten untereinander von ρ=0,15, p=0,27 (Dyspnöe und Diarrhoe) bis ρ=0,65, p=0,000 (Müdigkeit und Dyspnöe).

Die globale Lebensqualität wird in Tabelle 20 bei den Funktionen mit aufgeführt, wird aber wie oben beschrieben aus zwei speziellen Fragen berechnet. Im vorliegenden Fragebogen waren die entsprechenden
Fragen leider nicht korrekt abgedruckt, erlauben jedoch trotzdem eine Berechnung des Items [33]. Die Lebensqualität korrelierte mit den Funktionsskalen im Bereich von $\rho = 0.39$ (mit der kognitiven Funktion) bis $\rho = 0.66$ (mit der körperlichen Funktion) und mit den Symptomskalen von $\rho = 0.31$ (mit der finanziellen Auswirkung) bis $\rho = 0.58$ (mit Müdigkeit).

Zwischen den Funktions- und Symptomskalen varierten die signifikanten Korrelationen von $\rho = 0.28$ (körperliche Funktion mit Diarrhoe) bis $\rho = 0.77$ (Rollenfunktion mit Müdigkeit). Die Müdigkeit korrelierte außerdem hochsignifikant negativ mit der körperlichen Funktion ($\rho = -0.749, p = 0.000$) und mit der emotionalen Funktion ($\rho = -0.749, p = 0.000$).

Nicht signifikant waren lediglich die Korrelationen zwischen Lebensqualität und Obstipation ($\rho = -0.280, p = 0.057$), Lebensqualität und Diarrhoe ($\rho = -0.260, p = 0.078$), Dyspnoe und Diarrhoe ($\rho = 0.153, p = 0.273$) sowie Schmerzen und finanzieller Auswirkung ($\rho = 0.219, p = 0.122$).

Die vollständige Darstellung der signifikanten Korrelationen innerhalb der Lebensqualitätsdaten zeigen Tabellen 19 bis 21.

| Tabelle 19: Korrelationen innerhalb der Funktionsskalen des QLQ-C30 |
|---------------------------------|----|----|----|
| Körperliche Funktion (PF) | ρ | p | n |
| RF | 0.784 | 0.000 | ** 52 |
| EF | 0.576 | 0.000 | ** 54 |
| CF | 0.447 | 0.001 | ** 54 |
| SF | 0.538 | 0.000 | ** 52 |
| LQ | 0.658 | 0.000 | ** 47 |
| Rollenfunktion (RF) | ρ | p | n |
| EF | 0.646 | 0.000 | ** 52 |
| CF | 0.459 | 0.001 | ** 52 |
| SF | 0.681 | 0.000 | ** 50 |
| LQ | 0.544 | 0.000 | ** 45 |
| Emotionale Funktion (EF) | ρ | p | n |
| CF | 0.751 | 0.000 | ** 55 |
| SF | 0.709 | 0.000 | ** 53 |
| LQ | 0.560 | 0.000 | ** 47 |
| Kognitive Funktion (CF) | ρ | p | n |
| SF | 0.576 | 0.000 | ** 53 |
| LQ | 0.386 | 0.007 | ** 47 |
| Soziale Funktion (SF) | ρ | p | n |
| LQ | 0.573 | 0.000 | ** 46 |

Signifikanzniveaus: * < 0.05; ** < 0.01; ρ = Spearman’s rho
<table>
<thead>
<tr>
<th>Symptomskala</th>
<th>ρ</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Müdigkeit (FA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NV</td>
<td>0,565</td>
<td>0,000</td>
<td>**</td>
</tr>
<tr>
<td>PA</td>
<td>0,569</td>
<td>0,000</td>
<td>**</td>
</tr>
<tr>
<td>DY</td>
<td>0,645</td>
<td>0,000</td>
<td>**</td>
</tr>
<tr>
<td>SD</td>
<td>0,432</td>
<td>0,001</td>
<td>**</td>
</tr>
<tr>
<td>AP</td>
<td>0,582</td>
<td>0,000</td>
<td>**</td>
</tr>
<tr>
<td>OB</td>
<td>0,446</td>
<td>0,001</td>
<td>**</td>
</tr>
<tr>
<td>DI</td>
<td>0,347</td>
<td>0,011</td>
<td>*</td>
</tr>
<tr>
<td>FI</td>
<td>0,580</td>
<td>0,000</td>
<td>**</td>
</tr>
<tr>
<td>Übelkeit und Erbrechen (NV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>0,561</td>
<td>0,000</td>
<td>**</td>
</tr>
<tr>
<td>DY</td>
<td>0,523</td>
<td>0,000</td>
<td>**</td>
</tr>
<tr>
<td>SD</td>
<td>0,475</td>
<td>0,000</td>
<td>**</td>
</tr>
<tr>
<td>AP</td>
<td>0,550</td>
<td>0,000</td>
<td>**</td>
</tr>
<tr>
<td>OB</td>
<td>0,570</td>
<td>0,000</td>
<td>**</td>
</tr>
<tr>
<td>DI</td>
<td>0,464</td>
<td>0,001</td>
<td>**</td>
</tr>
<tr>
<td>FI</td>
<td>0,500</td>
<td>0,000</td>
<td>**</td>
</tr>
<tr>
<td>Schmerz (PA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DY</td>
<td>0,538</td>
<td>0,000</td>
<td>**</td>
</tr>
<tr>
<td>SD</td>
<td>0,417</td>
<td>0,002</td>
<td>**</td>
</tr>
<tr>
<td>AP</td>
<td>0,477</td>
<td>0,000</td>
<td>**</td>
</tr>
<tr>
<td>OB</td>
<td>0,393</td>
<td>0,004</td>
<td>**</td>
</tr>
<tr>
<td>DI</td>
<td>0,336</td>
<td>0,015</td>
<td>*</td>
</tr>
<tr>
<td>Ätemnot (DY)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>0,392</td>
<td>0,004</td>
<td>**</td>
</tr>
<tr>
<td>AP</td>
<td>0,497</td>
<td>0,000</td>
<td>**</td>
</tr>
<tr>
<td>OB</td>
<td>0,401</td>
<td>0,003</td>
<td>**</td>
</tr>
<tr>
<td>DI</td>
<td>0,317</td>
<td>0,022</td>
<td>*</td>
</tr>
<tr>
<td>Schlafstörung (SD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP</td>
<td>0,495</td>
<td>0,000</td>
<td>**</td>
</tr>
<tr>
<td>OB</td>
<td>0,297</td>
<td>0,031</td>
<td>*</td>
</tr>
<tr>
<td>DI</td>
<td>0,308</td>
<td>0,025</td>
<td>*</td>
</tr>
<tr>
<td>FI</td>
<td>0,377</td>
<td>0,006</td>
<td>**</td>
</tr>
<tr>
<td>Appetitverlust (AP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB</td>
<td>0,510</td>
<td>0,000</td>
<td>**</td>
</tr>
<tr>
<td>DI</td>
<td>0,489</td>
<td>0,000</td>
<td>**</td>
</tr>
<tr>
<td>FI</td>
<td>0,606</td>
<td>0,000</td>
<td>**</td>
</tr>
<tr>
<td>Obstipation (OB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI</td>
<td>0,356</td>
<td>0,008</td>
<td>**</td>
</tr>
<tr>
<td>FI</td>
<td>0,524</td>
<td>0,000</td>
<td>**</td>
</tr>
<tr>
<td>Diarrhoe (DI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI</td>
<td>0,458</td>
<td>0,001</td>
<td>**</td>
</tr>
</tbody>
</table>

Signifikanzniveaus: * < 0,05; ** < 0,01; ρ = Spearman’s rho

FI = Finanzielle Auswirkungen
Tabelle 21: Korrelationen zwischen Symptom- und Funktionsskalen des QLQ-C30

<table>
<thead>
<tr>
<th>Symptom/Problem</th>
<th>PF</th>
<th>RF</th>
<th>EF</th>
<th>CF</th>
<th>SF</th>
<th>LQ</th>
<th>ρ</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Müdigkeit (FA)</td>
<td>-0,749</td>
<td>-0,770</td>
<td>-0,749</td>
<td>-0,540</td>
<td>-0,657</td>
<td>-0,576</td>
<td>0,000 **</td>
<td>0,000 **</td>
<td>52</td>
</tr>
<tr>
<td>Ubelkeit und Erbrechen (NV)</td>
<td>-0,491</td>
<td>-0,509</td>
<td>-0,559</td>
<td>-0,341</td>
<td>-0,512</td>
<td>-0,448</td>
<td>0,000 **</td>
<td>0,000 **</td>
<td>52</td>
</tr>
<tr>
<td>Schmerzen (PA)</td>
<td>-0,679</td>
<td>-0,597</td>
<td>-0,693</td>
<td>-0,496</td>
<td>-0,558</td>
<td>-0,478</td>
<td>0,000 **</td>
<td>0,000 **</td>
<td>51</td>
</tr>
<tr>
<td>Atemnot (DY)</td>
<td>-0,558</td>
<td>-0,598</td>
<td>-0,558</td>
<td>-0,292</td>
<td>-0,387</td>
<td>-0,372</td>
<td>0,000 **</td>
<td>0,000 **</td>
<td>52</td>
</tr>
<tr>
<td>Schlafstörungen (SD)</td>
<td>-0,314</td>
<td>-0,413</td>
<td>-0,563</td>
<td>-0,433</td>
<td>-0,444</td>
<td>-0,345</td>
<td>0,013 *</td>
<td>0,003 **</td>
<td>52</td>
</tr>
<tr>
<td>Appetitverlust (AP)</td>
<td>-0,642</td>
<td>-0,577</td>
<td>-0,690</td>
<td>-0,611</td>
<td>-0,574</td>
<td>-0,543</td>
<td>0,000 **</td>
<td>0,000 **</td>
<td>53</td>
</tr>
<tr>
<td>Obstipation (OB)</td>
<td>-0,448</td>
<td>-0,481</td>
<td>-0,514</td>
<td>-0,377</td>
<td>-0,290</td>
<td>-0,448</td>
<td>0,001 **</td>
<td>0,000 **</td>
<td>53</td>
</tr>
<tr>
<td>Diarrhoe (DI)</td>
<td>-0,275</td>
<td>-0,303</td>
<td>-0,427</td>
<td>-0,412</td>
<td>-0,417</td>
<td>-0,375</td>
<td>0,044 *</td>
<td>0,001 **</td>
<td>54</td>
</tr>
<tr>
<td>Finanzielle Auswirkungen (FI)</td>
<td>-0,356</td>
<td>-0,527</td>
<td>-0,533</td>
<td>-0,390</td>
<td>-0,521</td>
<td>-0,312</td>
<td>0,010 *</td>
<td>0,000 **</td>
<td>52</td>
</tr>
</tbody>
</table>

Signifikanzniveaus: * < 0,05; ** < 0,01; ρ = Spearman’s rho
3.3.3 Korrelationen innerhalb der diabetesbezogenen Fragen

Tabelle 22: Korrelationen zwischen Inanspruchnahme von Untersuchungen

<table>
<thead>
<tr>
<th>Vergleichsinhalte</th>
<th>ρ</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wann BZ zuletzt gemessen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wann HbA1c zuletzt gemessen</td>
<td>0,332</td>
<td>0,032</td>
<td>* 42</td>
</tr>
<tr>
<td>Wann RR zuletzt gemessen</td>
<td>0,339</td>
<td>0,015</td>
<td>* 51</td>
</tr>
<tr>
<td>Wann Cholesterin zuletzt gemessen</td>
<td>0,321</td>
<td>0,028</td>
<td>* 47</td>
</tr>
<tr>
<td>Wann HbA1c zuletzt gemessen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes Typ</td>
<td>-0,305</td>
<td>0,042</td>
<td>* 45</td>
</tr>
<tr>
<td>Wann RR zuletzt gemessen</td>
<td>0,528</td>
<td>0,000 ** 44</td>
<td></td>
</tr>
<tr>
<td>Wann Cholesterin zuletzt gemessen</td>
<td>0,689</td>
<td>0,000 ** 44</td>
<td></td>
</tr>
<tr>
<td>Wann RR zuletzt gemessen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wann Cholesterin zuletzt gemessen</td>
<td>0,325</td>
<td>0,023</td>
<td>* 49</td>
</tr>
<tr>
<td>Letzter gemessener BZ-Wert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes-Typ</td>
<td>0,306</td>
<td>0,033</td>
<td>* 49</td>
</tr>
<tr>
<td>Letzter gemessener RR-Wert</td>
<td>0,480</td>
<td>0,001 ** 45</td>
<td></td>
</tr>
<tr>
<td>Erkrankungsdauer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Letzter gemessener RR-Wert</td>
<td>-0,291</td>
<td>0,045</td>
<td>* 48</td>
</tr>
</tbody>
</table>

Signifikanzniveaus: * < 0,05; ** < 0,01; ρ = Spearman’s rho

Tabelle 23: Korrelationen zwischen Arztkontakten und internistischen Parametern

<table>
<thead>
<tr>
<th></th>
<th>ρ</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wann zuletzt HbA1c gemessen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wann zuletzt beim Diabetologen</td>
<td>0,337</td>
<td>0,036 *</td>
<td>39</td>
</tr>
<tr>
<td>Wann zuletzt beim Augenarzt</td>
<td>0,296</td>
<td>0,046 *</td>
<td>46</td>
</tr>
<tr>
<td>Anzahl der Therapien gewichtet</td>
<td>-0,333</td>
<td>0,024 *</td>
<td>46</td>
</tr>
<tr>
<td>Wann zuletzt Cholesterin gemessen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wann zuletzt beim Hausarzt</td>
<td>0,327</td>
<td>0,022 *</td>
<td>49</td>
</tr>
<tr>
<td>Wann zuletzt beim Diabetologen</td>
<td>0,410</td>
<td>0,005 **</td>
<td>45</td>
</tr>
<tr>
<td>Wann zuletzt beim Augenarzt</td>
<td>0,364</td>
<td>0,009 **</td>
<td>51</td>
</tr>
<tr>
<td>Wann zuletzt beim Diabetologen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wann zuletzt beim Neurologen</td>
<td>0,316</td>
<td>0,027 *</td>
<td>49</td>
</tr>
<tr>
<td>Wann zuletzt beim Augenarzt</td>
<td>0,292</td>
<td>0,047 *</td>
<td>47</td>
</tr>
<tr>
<td>Wann zuletzt beim Hausarzt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl der Therapien</td>
<td>0,281</td>
<td>0,039 *</td>
<td>54</td>
</tr>
<tr>
<td>Bekannte Erkrankungsdauer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anzahl der Therapien gewichtet1</td>
<td>0,297</td>
<td>0,026 *</td>
<td>56</td>
</tr>
</tbody>
</table>

Signifikanzniveaus: * $< 0,05$; ** $< 0,01$; $\rho =$ Spearman’s rho. 1gewichtet bedeutet, jeder Therapie (Diät, Tabletten etc.) wurde eine bestimmte Ziffer zugeordnet, so dass aus dem Ergebnis dieser Spalte auf die Therapieformen rückgeschlossen werden kann.

Tabelle 24: Korrelationen mit der Zufriedenheit mit Arztkontakten

<table>
<thead>
<tr>
<th>Zufriedenheit mit</th>
<th>ρ</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hausarzt</td>
<td>Zufriedenheit mit Augenarzt</td>
<td>0,318</td>
<td>0,020 *</td>
</tr>
<tr>
<td></td>
<td>Zufriedenheit mit Therapie insgesamt</td>
<td>0,327</td>
<td>0,023 *</td>
</tr>
<tr>
<td>Diabetologe</td>
<td>Wann zuletzt Diabetologe</td>
<td>-0,508</td>
<td>0,006 **</td>
</tr>
<tr>
<td></td>
<td>Wann zuletzt Augenarzt</td>
<td>-0,472</td>
<td>0,011 *</td>
</tr>
<tr>
<td></td>
<td>Letzter gemessener Cholesterin-Wert</td>
<td>-0,667</td>
<td>0,001 **</td>
</tr>
<tr>
<td></td>
<td>Zufriedenheit mit Augenarzt</td>
<td>0,855</td>
<td>0,000 **</td>
</tr>
<tr>
<td></td>
<td>Zufriedenheit mit Krankenhaus</td>
<td>0,538</td>
<td>0,010 **</td>
</tr>
<tr>
<td></td>
<td>Zufriedenheit mit Therapie insgesamt</td>
<td>0,520</td>
<td>0,006 **</td>
</tr>
<tr>
<td>Augenarzt</td>
<td>Wann zuletzt Cholesterin gemessen</td>
<td>-0,407</td>
<td>0,003 **</td>
</tr>
<tr>
<td></td>
<td>Wann zuletzt Hausarzt</td>
<td>-0,400</td>
<td>0,003 **</td>
</tr>
<tr>
<td></td>
<td>Wann zuletzt Diabetologe</td>
<td>-0,313</td>
<td>0,031 *</td>
</tr>
<tr>
<td></td>
<td>Wann zuletzt Augenarzt</td>
<td>-0,471</td>
<td>0,000 **</td>
</tr>
<tr>
<td></td>
<td>Letzter gemessener RR-Wert</td>
<td>-0,298</td>
<td>0,042 *</td>
</tr>
<tr>
<td></td>
<td>Zufriedenheit mit Neurologen</td>
<td>0,685</td>
<td>0,002 **</td>
</tr>
<tr>
<td></td>
<td>Zufriedenheit mit Therapie insgesamt</td>
<td>0,385</td>
<td>0,006 **</td>
</tr>
<tr>
<td>Neurologe</td>
<td>Wann zuletzt Neurologe</td>
<td>-0,556</td>
<td>0,016 *</td>
</tr>
<tr>
<td></td>
<td>Letzter gemessener RR-Wert</td>
<td>-0,498</td>
<td>0,042 *</td>
</tr>
<tr>
<td>Krankenhaus</td>
<td>Letzter gemessener RR-Wert</td>
<td>-0,357</td>
<td>0,049 *</td>
</tr>
<tr>
<td></td>
<td>Letzter gemessener Cholesterin-Wert</td>
<td>-0,577</td>
<td>0,005 **</td>
</tr>
</tbody>
</table>

Signifikanzniveaus: * $< 0,05$; ** $< 0,01$; $\rho =$ Spearman’s rho
Tabelle 25 zeigt den BMI in Abhängigkeit von der Diabetesdauer.

Tabelle 25: BMI [kg/m²] in Abhängigkeit von der Diabetesdauer (n=55 verwertbare Antworten)

<table>
<thead>
<tr>
<th>Dauer</th>
<th>n</th>
<th>Anteil</th>
<th>Mittelw ± Stabw</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bis 1 Jahr</td>
<td>6</td>
<td>8,6%</td>
<td>29,6 ± 4,7</td>
<td>23,4</td>
<td>34,3</td>
</tr>
<tr>
<td>Bis 5 Jahre</td>
<td>14</td>
<td>20,0%</td>
<td>29,0 ± 7,1</td>
<td>17,6</td>
<td>46,7</td>
</tr>
<tr>
<td>Bis 10 Jahre</td>
<td>16</td>
<td>22,9%</td>
<td>29,9 ± 3,8</td>
<td>23,7</td>
<td>36,8</td>
</tr>
<tr>
<td>Über 10 Jahre</td>
<td>19</td>
<td>18,6%</td>
<td>27,9 ± 6,3</td>
<td>19,0</td>
<td>50,3</td>
</tr>
<tr>
<td>Keine Angabe</td>
<td>15</td>
<td>21,4%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1) Ein Patient machte keine Angaben zu Größe und Gewicht, wohl aber zur Diabetesdauer, daher zählt die Gruppe der Patienten mit einer Erkrankungsdauer über 10 Jahre insgesamt 20 Patienten.

3.3.4 Korrelationen innerhalb der Metafragen

Tabelle 26 zeigt Korrelationen mit dem Wunsch, wieder teilzunehmen. Die schwache negative Korrelation zwischen der Beurteilung der Befragung und der Akzeptanz einer Folgebefragung spricht dafür, dass Patienten, die wieder teilnehmen möchten, den Fragebogen eher positiver beurteilen als Patienten, die nicht wieder angeschrieben werden möchten. Die schwache positive Korrelation deutet an, dass Patienten lieber wieder teilnehmen, wenn sie den Fragebogen allein oder mit wenig Hilfe ausfüllen konnten.

Tabelle 26: Korrelationen innerhalb der Metafragen

<table>
<thead>
<tr>
<th>Möchte wieder teilnehmen</th>
<th>ρ</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meinung zur Befragung</td>
<td>-0,300</td>
<td>0,036*</td>
<td>49</td>
</tr>
<tr>
<td>Konnte Fragebogen selbst ausfüllen</td>
<td>0,305</td>
<td>0,022*</td>
<td>56</td>
</tr>
</tbody>
</table>

Signifikanzniveaus: * < 0,05; ** < 0,01; ρ = Spearman’s rho

3.3.5 Korrelationen zwischen den Fragebogenteilen

Die Beziehungen zwischen soziodemographischen Daten und dem QLQ-C30 sind in Tabelle 27 notiert: Höheres Alter trat bei negativer Korrelation mit schlechteren Funktionen (körperliche, emotionale, kognitive, soziale Funktion, Rollenfunktion und globale Lebensqualität) und stärker ausgeprägten Symptomen (Schmerz, Müdigkeit etc.) auf.

Tabelle 27: Korrelationen zwischen soziodemographischen Daten und QLQ-C30

<table>
<thead>
<tr>
<th>Alter</th>
<th>PF</th>
<th>ρ</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LQ</td>
<td>-0,338</td>
<td>0,020*</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>DI</td>
<td>-0,303</td>
<td>0,025*</td>
<td>55</td>
</tr>
</tbody>
</table>

Signifikanzniveaus: * < 0,05; ** < 0,01 ρ = Spearman’s rho
Zwischen soziodemographischen Daten und diabetesbezogenen Fragen trat eine signifikante Korrelation ($\rho = -0.615$, $p = 0.019$) zwischen dem erreichten Schulabschluss und dem letzten Wert des Blutzuckers auf. Die Polung beschreibt einen positiven Zusammenhang zwischen höherem Schulabschluss und besser eingestelltem Blutzucker. Unter den möglichen Abschlüssen wurden lediglich “keiner”, “Hauptschule” und “Realschule” genannt.

Tabelle 28: Korrelationen zwischen QLQ-C30-Funktionen und diabetesbezogenen Fragen

<table>
<thead>
<tr>
<th>Wann HbA$_{1c}$ zuletzt gemessen</th>
<th>LQ</th>
<th>ρ</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wann RR zuletzt gemessen</td>
<td>RF</td>
<td>0.321</td>
<td>0.023</td>
<td>* 50</td>
</tr>
<tr>
<td>Wann Cholesterin zuletzt gemessen</td>
<td>LQ</td>
<td>-0.307</td>
<td>0.045</td>
<td>* 43</td>
</tr>
<tr>
<td>Wann zuletzt Diabetologe</td>
<td>LQ</td>
<td>-0.368</td>
<td>0.016</td>
<td>* 42</td>
</tr>
<tr>
<td>Wann zuletzt Krankenhaus</td>
<td>PF</td>
<td>0.384</td>
<td>0.006</td>
<td>** 49</td>
</tr>
<tr>
<td></td>
<td>RF</td>
<td>0.344</td>
<td>0.017</td>
<td>* 48</td>
</tr>
<tr>
<td></td>
<td>EF</td>
<td>0.554</td>
<td>0.000</td>
<td>** 49</td>
</tr>
<tr>
<td></td>
<td>CF</td>
<td>0.378</td>
<td>0.007</td>
<td>** 49</td>
</tr>
<tr>
<td></td>
<td>SF</td>
<td>0.419</td>
<td>0.003</td>
<td>** 48</td>
</tr>
<tr>
<td></td>
<td>LQ</td>
<td>0.354</td>
<td>0.021</td>
<td>* 42</td>
</tr>
<tr>
<td>Wann zuletzt Neurologe</td>
<td>RF</td>
<td>0.363</td>
<td>0.010</td>
<td>* 50</td>
</tr>
<tr>
<td></td>
<td>EF</td>
<td>0.496</td>
<td>0.000</td>
<td>** 52</td>
</tr>
<tr>
<td></td>
<td>CF</td>
<td>0.544</td>
<td>0.000</td>
<td>** 52</td>
</tr>
<tr>
<td></td>
<td>SF</td>
<td>0.472</td>
<td>0.000</td>
<td>** 51</td>
</tr>
<tr>
<td>Anzahl ambulanter Behandlungen1</td>
<td>RF</td>
<td>-0.303</td>
<td>0.029</td>
<td>* 52</td>
</tr>
<tr>
<td></td>
<td>EF</td>
<td>-0.312</td>
<td>0.020</td>
<td>* 55</td>
</tr>
<tr>
<td></td>
<td>SF</td>
<td>-0.290</td>
<td>0.033</td>
<td>* 54</td>
</tr>
<tr>
<td>Anzahl stationärer Aufenthalte2</td>
<td>PF</td>
<td>-0.364</td>
<td>0.007</td>
<td>** 54</td>
</tr>
<tr>
<td></td>
<td>RF</td>
<td>-0.386</td>
<td>0.005</td>
<td>** 52</td>
</tr>
<tr>
<td></td>
<td>EF</td>
<td>-0.516</td>
<td>0.000</td>
<td>** 55</td>
</tr>
<tr>
<td></td>
<td>CF</td>
<td>-0.305</td>
<td>0.024</td>
<td>* 55</td>
</tr>
<tr>
<td></td>
<td>SF</td>
<td>-0.370</td>
<td>0.006</td>
<td>** 54</td>
</tr>
<tr>
<td></td>
<td>LQ</td>
<td>-0.509</td>
<td>0.000</td>
<td>** 47</td>
</tr>
<tr>
<td>Zufriedenheit mit Augenarzt</td>
<td>EF</td>
<td>0.389</td>
<td>0.004</td>
<td>** 54</td>
</tr>
<tr>
<td></td>
<td>CF</td>
<td>0.325</td>
<td>0.016</td>
<td>* 54</td>
</tr>
<tr>
<td></td>
<td>SF</td>
<td>0.364</td>
<td>0.007</td>
<td>** 53</td>
</tr>
<tr>
<td></td>
<td>LQ</td>
<td>0.319</td>
<td>0.031</td>
<td>* 46</td>
</tr>
<tr>
<td>Zufriedenheit mit Krankenhaus</td>
<td>SF</td>
<td>0.358</td>
<td>0.029</td>
<td>* 37</td>
</tr>
<tr>
<td>Zufriedenheit mit Therapie insgesamt</td>
<td>PF</td>
<td>0.366</td>
<td>0.010</td>
<td>** 49</td>
</tr>
<tr>
<td></td>
<td>RF</td>
<td>0.564</td>
<td>0.000</td>
<td>** 47</td>
</tr>
<tr>
<td></td>
<td>EF</td>
<td>0.473</td>
<td>0.001</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>SF</td>
<td>0.459</td>
<td>0.001</td>
<td>** 49</td>
</tr>
</tbody>
</table>

Signifikanzniveaus: * < 0.05; ** < 0.01; ρ = Spearman’s rho;
1 im letzten Monat, 2 im letzten Jahr

Tabelle 29: Korrelationen zwischen QLQ-C30-Symptomen und diabetesbezogenen Fragen

<table>
<thead>
<tr>
<th></th>
<th>ρ</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bekannte Erkrankungsdauer</td>
<td>OB</td>
<td>0,343</td>
<td>0,011 * 54</td>
</tr>
<tr>
<td>Wann zuletzt Krankenhaus</td>
<td>FA</td>
<td>-0,544</td>
<td>0,000 ** 48</td>
</tr>
<tr>
<td></td>
<td>NV</td>
<td>-0,461</td>
<td>0,001 ** 47</td>
</tr>
<tr>
<td></td>
<td>PA</td>
<td>-0,488</td>
<td>0,001 ** 46</td>
</tr>
<tr>
<td></td>
<td>DY</td>
<td>-0,443</td>
<td>0,002 ** 48</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>-0,447</td>
<td>0,002 ** 47</td>
</tr>
<tr>
<td></td>
<td>AP</td>
<td>-0,584</td>
<td>0,000 ** 47</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>-0,209</td>
<td>0,046 * 48</td>
</tr>
<tr>
<td></td>
<td>FI</td>
<td>-0,426</td>
<td>0,003 ** 47</td>
</tr>
<tr>
<td>Wann zuletzt Neurologe</td>
<td>FA</td>
<td>-0,288</td>
<td>0,041 * 51</td>
</tr>
<tr>
<td></td>
<td>NV</td>
<td>-0,543</td>
<td>0,000 ** 50</td>
</tr>
<tr>
<td></td>
<td>PA</td>
<td>-0,366</td>
<td>0,009 ** 50</td>
</tr>
<tr>
<td></td>
<td>DY</td>
<td>-0,283</td>
<td>0,045 * 51</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>-0,403</td>
<td>0,003 ** 51</td>
</tr>
<tr>
<td></td>
<td>AP</td>
<td>-0,361</td>
<td>0,009 ** 51</td>
</tr>
<tr>
<td></td>
<td>OB</td>
<td>-0,481</td>
<td>0,000 ** 52</td>
</tr>
<tr>
<td></td>
<td>DI</td>
<td>-0,286</td>
<td>0,040 * 52</td>
</tr>
<tr>
<td></td>
<td>FI</td>
<td>-0,401</td>
<td>0,004 ** 50</td>
</tr>
<tr>
<td>Anzahl ambulanter Behandlungen</td>
<td>NV</td>
<td>0,275</td>
<td>0,049 * 52</td>
</tr>
<tr>
<td></td>
<td>PA</td>
<td>0,345</td>
<td>0,012 * 52</td>
</tr>
<tr>
<td></td>
<td>DY</td>
<td>0,338</td>
<td>0,012 * 54</td>
</tr>
<tr>
<td></td>
<td>OB</td>
<td>0,340</td>
<td>0,012 * 54</td>
</tr>
<tr>
<td></td>
<td>FI</td>
<td>0,417</td>
<td>0,002 ** 53</td>
</tr>
<tr>
<td>Anzahl stationärer Aufenthalte</td>
<td>FA</td>
<td>0,407</td>
<td>0,002 ** 54</td>
</tr>
<tr>
<td></td>
<td>NV</td>
<td>0,335</td>
<td>0,015 * 52</td>
</tr>
<tr>
<td></td>
<td>PA</td>
<td>0,322</td>
<td>0,020 * 52</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0,346</td>
<td>0,011 * 53</td>
</tr>
<tr>
<td></td>
<td>AP</td>
<td>0,521</td>
<td>0,000 ** 53</td>
</tr>
<tr>
<td>Zufriedenheit mit Diabetologe</td>
<td>FA</td>
<td>-0,387</td>
<td>0,042 * 28</td>
</tr>
<tr>
<td>Zufriedenheit mit Augenarzt</td>
<td>FA</td>
<td>-0,391</td>
<td>0,004 ** 53</td>
</tr>
<tr>
<td></td>
<td>AP</td>
<td>-0,303</td>
<td>0,029 * 52</td>
</tr>
<tr>
<td>Zufriedenheit mit Therapie insgesamt</td>
<td>FA</td>
<td>-0,478</td>
<td>0,001 ** 49</td>
</tr>
<tr>
<td></td>
<td>PA</td>
<td>-0,485</td>
<td>0,001 ** 47</td>
</tr>
<tr>
<td></td>
<td>FI</td>
<td>-0,360</td>
<td>0,012 * 48</td>
</tr>
</tbody>
</table>

Signifikanz niveaus: * < 0,05; ** < 0,01; ρ = Spearman’s rho;
1) im letzten Monat, 2) im letzten Jahr

Tabelle 30 zeigt die beobachteten signifikanten Korrelationen zwischen soziodemographischen Daten und Ergebnissen aus den Metafragen. Mit zunehmendem Alter beurteilten die Patienten die Befragung eher etwas positiver, benötigten zum Ausfüllen jedoch mehr Hilfe und möchten eher nicht mehr angeschrieben werden. Die Anzahl gültiger Antworten nahm ebenfalls mit höherem Alter eher ab.
Tabelle 30: Korrelationen zwischen Metafragen und Alter

<table>
<thead>
<tr>
<th>Alter</th>
<th>Meinung zur Befragung</th>
<th>ρ</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konnte Fragebogen selbst ausfüllen</td>
<td>0,313</td>
<td>0,017</td>
<td>* 50</td>
<td></td>
</tr>
<tr>
<td>Möchte wieder teilnehmen</td>
<td>0,478</td>
<td>0,000</td>
<td>** 59</td>
<td></td>
</tr>
<tr>
<td>Anzahl gültiger Antworten</td>
<td>-0,438</td>
<td>0,000</td>
<td>** 70</td>
<td></td>
</tr>
</tbody>
</table>

Signifikanzniveaus: * < 0,05; ** < 0,01; ρ = Spearman’s rho

Tabelle 31 gibt Übersicht über Korrelationen zwischen Lebensqualitätsdaten und Metafragen. Patienten mit guten Funktionen (körperliche, emotionale, cognitive, soziale Funktion, Rollenfunktion und globale Lebensqualität) und gering ausgeprägten Symptomen (Müdigkeit, Schmerz etc.) kamen auch mit dem Ausfüllen des Fragebogens besser zurecht.

Tabelle 31: Korrelationen zwischen LQ-Daten und Metafragen

<table>
<thead>
<tr>
<th>Konnte Fragebogen selbst ausfüllen</th>
<th>PF</th>
<th>ρ</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF</td>
<td>-0,539</td>
<td>0,000</td>
<td>** 51</td>
<td></td>
</tr>
<tr>
<td>EF</td>
<td>-0,479</td>
<td>0,000</td>
<td>** 53</td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>-0,451</td>
<td>0,001</td>
<td>** 53</td>
<td></td>
</tr>
<tr>
<td>SF</td>
<td>-0,444</td>
<td>0,001</td>
<td>** 52</td>
<td></td>
</tr>
<tr>
<td>LQ</td>
<td>-0,545</td>
<td>0,000</td>
<td>** 46</td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>0,447</td>
<td>0,001</td>
<td>** 52</td>
<td></td>
</tr>
<tr>
<td>NV</td>
<td>0,308</td>
<td>0,028</td>
<td>* 51</td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>0,510</td>
<td>0,000</td>
<td>** 50</td>
<td></td>
</tr>
<tr>
<td>DY</td>
<td>0,276</td>
<td>0,048</td>
<td>* 52</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>0,573</td>
<td>0,000</td>
<td>** 51</td>
<td></td>
</tr>
<tr>
<td>AP</td>
<td>0,476</td>
<td>0,000</td>
<td>** 52</td>
<td></td>
</tr>
</tbody>
</table>

Signifikanzniveaus: * < 0,05; ** < 0,01; ρ = Spearman’s rho

Tabelle 32: Korrelationen zwischen den Metafragen und diabetesbezogenen Fragen

<table>
<thead>
<tr>
<th>Konnte Fragebogen selbst ausfüllen</th>
<th>Wann zuletzt Krankenhaus</th>
<th>ρ</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wann zuletzt Neurologe</td>
<td>-0,387</td>
<td>0,004</td>
<td>** 53</td>
<td></td>
</tr>
<tr>
<td>Anzahl stationärer Aufenthalte</td>
<td>0,294</td>
<td>0,031</td>
<td>* 54</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Möchte wieder teilnehmen</th>
<th>Wann zuletzt Diabetologe</th>
<th>ρ</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letzter HbA₁c-Wert</td>
<td>0,313</td>
<td>0,034</td>
<td>* 46</td>
<td></td>
</tr>
<tr>
<td>Zufriedenheit mit Therapie insgesamt</td>
<td>0,364</td>
<td>0,008</td>
<td>** 52</td>
<td></td>
</tr>
</tbody>
</table>

Signifikanzniveaus: * < 0,05; ** < 0,01; ¹)im letzten Jahr, ρ = Spearman’s rho
4 Diskussion

4.1 Ablauf der Erhebung und Datenqualität

4.1.1 Zusammenstellung des Fragebogens

4.1.2 Technische Umsetzung

Probelauf: Ein vor der ersten Versendung der Fragebögen an Patienten durchgeführter Probelauf ermöglichte die Optimierung der Verarbeitung der Fragebögen (im Probelauf waren beim Scannen zwei verschiedene Größen aufgetreten), was allerdings nicht alle Fehler vermeiden konnte. So musste ein schon im Testlauf aufgefallener weißer Strich auf den gescanneten Fragebögen auch bei der eigentlichen Patientenbefragung nachbearbeitet werden, wie unter 3.1.1, Nachbearbeitung der eingegangenen Fragebögen, beschrieben.
Fehlererkennung: Die Erkennung der Seitennummer und der zugehörigen Vorlage verlief mit einer fehlgeschlagenen Erkennung in 2% und einer unsicheren Erkennung in 1,9% der Fälle zufriedenstellend. Die fehlerfreie Erkennung der markierten Antwortfelder war auch durch die ausführliche Instruktion der Patienten mit Markierungsbefispielen im Abschreiben bedingt, die von den Patienten gut berücksichtigt wurden.

Bei der automatisierten Erkennung der PID-Barcode trat der größte Anteil der Fehler auf. Da die PID vier Ziffern umfasste, die Seitennummer nur zwei Ziffern, aber beide auf eine ähnliche Länge formatiert wurden, waren die einzelnen Balken der PID schmaler und enger, was die höhere Fehlerquote bei der Erkennung der PID gegenüber der Seitenzahl erklärt. An dieser Stelle kann die Erkennung durch die Wahl möglichst kurzer Codenummern und einen größeren Druck der Barcodes am effektivsten optimiert werden. Modernere Software dürfte darüber hinaus eine bessere Erkennungsleistung bieten, da zweidimensionale Barcodes in immer mehr Bereichen Verwendung finden. Für weitere Befragungen würde ein Winkel auf den Bögen eine Lagekorrektur durch den Scanner der AOK ermöglichen, was wiederum die Auswertbarkeit mit einem Optical Mark Recognition Programm sicherer macht.

Computerunterstützte Auswertung: Die Möglichkeit, ohne umständliches Hantieren mit Papierstapeln zu jedem Antwortfeld der erzeugten Datentabelle sofort den korrespondierenden Bildausschnitt des Originalfragebogens anzuzeigen, wurde nach der raschen Einarbeitung als sehr angenehm und praktisch erlebt. Durch eine selektive Nachbearbeitung lediglich der unsicher oder fehlerhaft erkannten Informationen wird bei der Auswertung in jedem Fall gewonnen. Die automatisierte Bearbeitung diente neben dem Zeitgewinn auch der Vermeidung von Übertragungsfehlern.

Im Rahmen der hier durchgeführten Machbarkeitsstudie wurden zur Prüfung der Erkennungssicherheit auch alle ohne Fehlermeldung übertragen Daten nachkontrolliert, ohne dass dabei ein weiterer Fehler gefunden wurde. Die somit verlässliche und deutlich spürbare Reduktion der manuellen Auswertungsarbeit auf den kleinen Prozentsatz der unsicher oder fehlerhaft erkannten Markierungen bzw. Barcodes verringert die Wahrscheinlichkeit von Fehlern durch menschliche Irrtümer allein schon durch die verminderte Anzahl.

4.1.3 Patientenauswahl, Fragebogenversand und Rücklauf

Patientenauswahl: Die Gesamtgruppe der 4.642 ausgewählten Diabetiker ist in den 199 angeschriebenen und 70 antwortenden Patienten sowohl in Bezug auf das Alter als auch in Bezug auf die Postleitzahlenbereiche bzw. Ortschaften gut repräsentiert. Es sind jedoch noch verschiedene andere Gesichtspunkte zu berücksichtigen, die im Folgenden dargestellt werden.

Die bei der AOK ausgewählte Patientenstichprobe kann zunächst nicht den Anspruch erheben, für sämtliche Diabetiker in Deutschland repräsentativ zu sein.

- Bei der AOK versicherte Patienten stellen aus historischen Gründen ein ausgewähltes Kollektiv dar. Ursprünglich waren alternative gesetzliche Versicherungen nur für ausgewählte Gruppen (z.B.
Betriebskrankenkassen) zugänglich, was sich in der Altersgruppe der befragten Patienten noch bemerkbar machen dürfte. Dagegen gibt es unter den Versicherten einen überdurchschnittlich hohen Anteil älterer, einkommensschwacher oder aus anderen Gründen mit höherem gesundheitlichen Risiko behafteter Patienten, was auch eine Grundlage des bisherigen Risikostrukturausgleichs bildet. Der soziale Status wirkt sich auch auf die Prävalenz des Diabetes mellitus aus: im gesamtdeutschen Bundes-Gesundheitssurvey 1998 waren in der Unterschicht 5,6%, in der Mittelschicht 3,5% und in der Oberschicht 2,5% der TeilnehmerInnen von einem nicht-insulinpflichtigen Diabetes mellitus betroffen [69].

Örtliche Verteilung: Der größte Teil (98,8%) der Patienten wohnte im Postleitzahlenbereich 7, was bei einer regional ausgelegten Studie zu erwarten ist. Einzelne Patienten mit Wohnorten in anderen Postleitzahlenbereichen können z.B. durch einen Hausarzt im angrenzenden Postleitzahlenbereich, Arztbesuche während Reisen oder eventuell auch Zweitwohnsitze erklärt werden, da das ganze Spektrum der ersten Postleitzahl-Stellen (d.h. 0-9) vertreten war.

Rücklauf und Vollständigkeit der Antworten: Der Rücklauf des Fragebogens ist mit 35% im Vergleich zu anderen Briefbefragungen durchschnittlich. Einige Zahlen aus der Literatur:
Für eine kontrollierte Studie zur Wirksamkeit von Vitamin D₃ auf Frakturen und Mortalität wurden 11.120 Patienten im Alter von 65-85 Jahren brieflich zur Teilnahme an einer doppelblinden, randomisierten Cholecalciferol-Substitution aufgefordert [121]. Die teilnehmenden Patienten füllten ebenfalls einen Fragebogen aus. Der Rücklauf lag bei 3.504 Patienten (31,5%), was mit dem Rücklauf der vorliegenden Studie vergleichbar ist. Dagegen könnte man annehmen, dass die Motivation zur kostenlosen Teilnahme an einer präventiven Maßnahme wie in der zitierten Studie und damit auch der Rücklauf höher sein müßten, als bei einer Briefbefragung, die für die Teilnehmer primär nur Arbeit und keinen unmittelbaren Nutzen bringt.

Bei der Befragung einer gesunden weiblichen dänischen Population (in zwei Gruppen unterteilt) mit dem QLQ-C30 wurden Rückläufe von 39% bzw. 35% erzielt, die mit zwei Erinnerungsschreiben auf insgesamt 76% bzw. 71% gesteigert werden konnten [68]. Auch in dieser Befragung konnten leere Fragebögen zurückgeschickt werden, was in 5% bzw. 22% geschah. Bei der altersadaptierten Auswertung der Rückläufe ergab sich eine abnehmende Teilnehmerrate von 60% bei den 21- bis 29-Jährigen auf unter 40% bei den 71- bis 79-Jährigen. Eine bessere Resonanz bei den jüngsten Teilnehmern kann in der Diabetikerbefragung nicht bestätigt werden (siehe auch unter “Alter” im soziodemographischen Teil), was allerdings auch durch ihre geringe Anzahl bedingt sein kann. Die altersadaptierten Rücklaufzahlen decken sich jedoch sehr gut mit denen der vorliegenden Studie. Der Einsatz von postalischen oder telefonischen Erinnerungen ist für eventuelle Folgebefragungen zu erwägen, um die Aussagekraft der Daten zu erhöhen.

Auch der Rücklauf von postalischen Befragungen zum Qualitätsmanagement an Kliniken lag nach einem ersten Anschreiben bei nur 43,8%, erst durch telefonische Nachfrage konnte er auf 59,7% gesteigert werden [31]. In dieser Studie wurde eine kleine Fragenanzahl präferiert, um höhere Rücklaufquoten zu erreichen. Auf die persönliche Ansprache der jeweils angeschriebenen Leiter der Einrichtungen, die Information über den Sinn und die anonyme Durchführung der Befragung wurde besonderen Wert gelegt, da dies die Bereitschaft zur Teilnahme steigern kann [28]. Dies wurde in der vorliegenden Studie berücksichtigt, ebenso wie die ähnlichen Rücksendedufen von zwei bzw. drei Wochen und beigelegte Frei-Rückumschläge. Der Vergleich mit diesen Daten zeigt, dass der Rücklauf der vorliegenden Studie zwar nicht sehr hoch ist, aber durchaus dem Ergebnis anderer Briefbefragungen entspricht, besonders, wenn man das Alter und den Gesundheitszustand der Befragten berücksichtigt.

Vergleich verschiedener Befragungsmodi

Alternativ zur vorliegenden Briefbefragung sind Systeme mit variabler Computerausstattung oder auch telefonische Befragungen möglich, von denen an dieser Stelle einige besprochen werden sollen.
Systeme mit Papierfragebogen: Diese Methode ist wohl die “klassische” Befragungsmethode, die in vielen, auch groß angelegten Studien Verwendung findet. Ein Vorteil dieser Methode ist, dass die Fragebögen neben ortsgebundenen Befragungen auch direkt an alle Teilnehmer verschickt werden können und es somit nicht notwendig ist, jeden einzelnen einzubestellen und Räume sowie gegebenenfalls Betreuung während der Beantwortung bereitzustellen.

Der Hauptnachteil aller Methoden, bei denen die Eingabe der Antworten nicht direkt am Computer erfolgt, sondern von Hand durch Patient oder einen Interviewer, Beleglesegeräte und optische Scanner durchgeführt wird, ist die fehlende direkte Kontrolle der Vollständigkeit. Soweit diese nicht im Anschluss an die Befragung überprüft wird, besteht die Gefahr des Datenverlustes. Zusätzlich sind die erhobenen Daten nicht direkt verfügbar und auch der genaue Zeitpunkt und die Dauer der Beantwortung des Fragebogens werden nicht automatisch erfasst. Die weitere Auswertung ist, besonders wenn sie “von Hand” geschieht, ebenfalls fehleranfällig, leicht können Bögen verwechselt oder Markierungen falsch übertragen werden. Soll die weitere Verarbeitung mit Scanner und Belegleser erfolgen, so muss die Markierung deutlich genug sein, was in der vorliegenden Studie kein Problem darstellte.

Für Folgebefragungen ist ein Erinnerungsschreiben empfehlenswert, was auch in anderen Studien den Rücklauf signifikant steigern konnte.

4.2 Inhalt des Datenrücklaufs

4.2.1 Soziodemographische Daten

Geschlecht: Unter den 199 angeschriebenen Patienten waren 125 Frauen (62,8%) und 74 Männer (37,1%). Dies entspricht der prozentualen Verteilung unter den antwortenden Patienten aus den Daten der AOK (61,4% Frauen und 38,6% Männer). Aus den Fragebögen waren es dagegen 44,3% Frauen, 31,4% Männer.
und 24,3% fehlende Antworten, so dass der Anteil leer zurückgesandter oder unvollständig ausgefüllter Fragebögen unter den Frauen etwas höher ist. Der höhere Anteil von betroffenen Frauen deckt sich mit Angaben aus der Literatur. In einer repräsentativen Untersuchung von Typ-2-Diabetikern in Hausarztpraxen im Bezirk Nordbaden war die Verteilung mit 53% Frauen und 47% Männern jedoch etwas ausgewogen [122]. Aus den Daten des Gesundheitssurveys geht hervor, dass ca. 4,7% der Männer und 5,6% der Frauen im Alter von 18 bis 79 Jahren an Diabetes mellitus erkrankt sind [61, 119]. Nach Untersuchungen von Löwel et al. zur Prävalenz des Diabetes Typ 1 und 2 in Deutschland sind unter den 45- bis 54-jährigen 4,2% der Männer und 2,5% der Frauen betroffen, unter den 55- bis 64-Jährigen dagegen 8,8% der Männer und 7,5% der Frauen [77].

Alter: Das Durchschnittsalter entspricht, wie schon unter Abschnitt 4.1.3, Altersverteilung, beschrieben, mit 68,1 ±10,26 Jahren dem Durchschnittsalter von Typ-2-Diabetikern aus anderen Untersuchungen [83, 102, 122]. Interessant ist, dass die jüngsten angeschriebenen Patienten (n=10 im Alter von ca. 10-35 Jahren) im Gegensatz zu den ältesten nicht an der Befragung teilgenommen haben, was auch an der geringeren Standardabweichung des Alters der antwortenden gegenüber den ausgewählten bzw. angeschriebenen Patienten sichtbar wird. Möglich ist, dass ein Teil der Patienten - vermutlich eher aus der Gruppe der Schüler und Berufstätigen als aus der Gruppe der in der Regel weniger an die Hochsaison gebundenen Rentner - in den Sommerferien war und aus diesem Grunde nicht teilnahm. Dass Kinder einer für Erwachsene ausgelegten Befragung teilnehmen, ist nicht unbedingt zu erwarten. Bei jüngeren Erwachsenen sollte jedoch von einem größeren Interesse an der aktiven Mitbeteiligung an Gesundheitsfragen ausgegangen werden, besonders, da mit gesundheitlichen Einschränkungen, die alten Menschen eventuell die Teilnahme erschweren, a priori nicht zu rechnen ist.

Familienstand: Knapp die Hälfte der befragten Patienten war verheiratet oder lebte in einer Partnerschaft, die nächst größte Gruppe war verwitwet.

Die folgenden vier Fragen zur Berufstätigkeit schienen für die Teilnehmer der Befragung nicht immer eindeutig zu beantworten gewesen zu sein. Dies zeigte sich am für die Soziodemographischen Fragen überdurchschnittlich hohen Anteil an nicht beantworteten Fragen (21,4%, 44,3%, 85,7%, 47,1%).

Art der Tätigkeit: Dem Durchschnittsalter entsprechend waren unter 10% der Befragten berufstätig, mit 60% ist die Mehrzahl in Rente. Bei den 10% nicht erwerbstätigen gab auch ein Patient an, “krank” zu sein, während sich in der Rubrik “Ruhestand” ein Patient als “EU-Rentner” eintrug, so dass die Trennschärfe dieser Frage nicht klar einschätzbar ist. Die Möglichkeit, in den Antwortfeldern eine Erwerbsunfähigkeitsrente von der Altersrente zu unterscheiden, wäre ein zusätzliches Maß für den allgemeinen Gesundheitszustand der Teilnehmer.

Art der Tätigkeitsausübung: Hier überwog die “Tätigkeit im Haushalt”, gefolgt von “angestellt”, was auch zur Population mit höherem Durchschnittsalter passt. Die Fragestellung schien aber insofern nicht eindeutig, als unklar blieb, ob sie sich auf die aktuelle Berufstätigkeit oder auch die frühere bezog, da in den Freitextfeldern bei fehlenden Antworten u. a. auch “Rentner” oder “Rente” angegeben wurde. Allerdings waren die Fragen “selbständig” oder “beamtet” nie angekreuzt worden, was - wie auch das Ergebnis der folgenden beiden Fragen - für den durchschnittlichen bis niedrigen sozialen Status der AOK-Versicherten spricht.
Tätigkeitsbereich: Diese Frage ergab ähnliche Ergebnisse wie die vorhergehende, neben einem hohen Prozentsatz nicht beantworteter Fragen (85,7%) waren Dienstleistung und (aus den Freitextfeldern) Haushalt und Rente die meistgenannten Tätigkeitsfelder.

Verantwortung im Betrieb: Der überwiegende Teil der Patienten gab an, keine Verantwortung im Betrieb zu haben bzw. gehabt zu haben. Diese Frage ist allerdings für den hohen Anteil der Patienten, die im Ruhestand oder im Haushalt tätig sind, eventuell nicht eindeutig.

4.2.2 Lebensqualität - QLQ-C30

Die Ergebnisse sämtlicher Skalen überstreichen den gesamten verfügbaren Bereich. Anhand der Quartile lässt sich erkennen, dass in den Funktionsskalen (körperliche, emotionale, kognitive, soziale Funktion, Rollenfunktion und globale Lebensqualität) deutliche Einschränkungen bestehen. Die Symptomskalen (Schmerz, Müdigkeit etc.) zeigen je nach Symptom eine mäßige bis deutliche Ausprägung, was die alters- und diabetesbedingte Morbidität der Befragten illustriert. Cronbach’s α wurde für alle Funktionen und diejenigen Symptome berechnet, zu denen mehr als eine Frage gestellt wurde. Die Werte liegen zwischen 0,94 und 0,58 und sind damit hoch bis sehr hoch, was die vom QLQ-C30 erwartete gute Skalenreliabilität bestätigt und den Ergebnissen aus der deutschen Referenzpopulation [107] sehr nahe kommt.

Auswirkungen des Druckfehlers: Bei sämtlichen Vergleichen der Ergebnisse des QLQ-C30 ist zu berücksichtigen, dass auf Grund des im Methodenteil näher beschriebenen Fehlers bei der Erstellung des Fragebogens lediglich die Frage “Wie würden Sie insgesamt Ihre Lebensqualität beurteilen?” in die globale Skala zur LQ einging, während die Frage “Wie würden Sie insgesamt Ihren Gesundheitszustand beurteilen?” entfiel. Da es sich hierbei um einen systematischen Fehler handelt, kann unser Befragungsergebnis auf dieser Skala nicht ohne weiteres mit den Ergebnissen anderer Studien in derselben Skala verglichen werden.

Allerdings zeigten die Ergebnisse der norwegischen Normalbevölkerung eine hohe Übereinstimmung der Antworten auf beide Fragen. Die Frage nach der Lebensqualität lieferte einen Mittelwert von 75,4, diejenige nach der Gesundheit von 75,2 und die verbundene Skala von 75,3. Die Verteilung der einzelnen Antworten auf die möglichen Kategorien war hierbei beinahe identisch. Bei der Betrachtung der Ergebnisse anderer Referenzpopulationen (mit onkologischen Erkrankungen) erreichte eine einzige Referenzpopulation einen Unterschied der Mittelwerte von 7,4 Punkten (Small cell lung cancer, limited disease); die überwiegende Mehrheit der Referenzpopulationen lieferte Unterschiede von weniger als 5 Punkten, es kamen Abweichungen in beide Richtungen vor [34]. Dabei waren die Antwortverteilungen für die beiden Einzelfragen einander in jeder erkrankten Gruppe deutlich ähnlicher als den Antwortverteilungen der Normalbevölkerung. Somit darf angenommen werden, dass die Antwort auf die Frage nach der Lebensqualität alleine dem Mittelwert der Antworten auf die beiden Fragen zumindest nahe kommt, dennoch sind alle direkten Vergleiche unter entsprechendem Vorbehalt zu werten.

und die Patienten der kardiologischen Ambulanz noch einmal einzeln dargestellt, da die kardiologischen Patienten mit durchschnittlich 60,8 Jahren den befragten Diabetikern im Alter ähnlicher sind als die übrigen Ambulanzpatienten mit 48 Jahren und die deutsche Referenzpopulation mit 49 Jahren Durchschnittsalter. Da nicht alle Rohwerte der anderen Studien verfügbar waren, wurden nur die Mittelwerte verglichen und graphisch dargestellt und keine weiteren statistischen Testverfahren angewendet.

4.2.3 Diabetesbezogene Fragen

Diabetestyp und Dauer der Erkrankung: In der vorliegenden Studie gaben 5,7% der Patienten an, an Diabetes mellitus Typ 1 erkrankt zu sein, 72,9% gaben Diabetes mellitus Typ 2 an. Einer der Typ-1-Diabetiker hat allerdings in der Frage nach der Therapie des Diabetes mellitus nur Tabletten angegeben,
so dass unklar bleibt, ob er das Insulin anzukreuzen vergessen hat oder doch Typ-2-Diabetiker ist. Ein weiterer Patient, der "weiß nicht" angab, ist der Typ-2-Gruppe zuzurechnen, da er ausschließlich mit Tabletten behandelt wird und Patienten mit Diabetes mellitus Typ 1 in der Regel besser über ihre Krankheit informiert sind als Typ-2-Diabetiker.

Chantelau und Abholz gaben eine auf Grund von Stichproben ermittelte Diabetes mellitus Typ 2 Häufigkeit von 5% der Gesamtbevölkerung an. Die Prävalenz des Diabetes mellitus Typ 1 wurde dagegen auf 0,25% geschätzt, was einer Verteilung von 95% Typ-2- und 5% Typ-1-Diabetikern entspricht [17] und sich mit den Daten der befragten Population deckt.

Die Prävalenz des Diabetes mellitus variiert mit der sozialen Lage: Im gesamtdeutschen Bundes-Gesundheitssurvey waren 1998 in der Unterschicht 5,7%; in der Mittelschicht 3,5% und in der Oberschicht 2,5% der TeilnehmerInnen von einem nicht-insulinpflichtigen Diabetes mellitus betroffen [69]. Dies ist im Hinblick auf das eher durchschnittliche oder niedrige soziale Niveau vieler AOK-Versicherter interessant.

Der Zeitpunkt der Diagnosestellung lag bei über 50% der Befragten 6 und mehr Jahre zurück, was den chronischen Verlauf der Erkrankung widerspiegelt und beim Altersdurchschnitt der Betroffenen auch zu erwarten war. Ähnliche Ergebnisse lieferten die Untersuchung von Rothenbacher et al. aus dem Jahr 2000 an Typ-2-Diabetikern [102] sowie eine repräsentative Untersuchung von 518 Patienten mit Diabetes mellitus aus 90% aller Hausarztpraxen einer Region in Nordbaden ("Sinsheimer Studie", [122]). In Deutschland liegt die Dauer der Erkrankung seit Diagnosestellung bei den in der Mehrzahl über 60-jährigen Typ-2-Diabetikern unter 10 Jahren [17]. Eine andere Frage ist, seit wann die Erkrankung tatsächlich vorliegt.

In einer in Australien und den USA durchgeführten Untersuchung wurde bei der Diagnosestellung schon in 20,8% (USA) und 9,9% (Australien) eine Retinopathie festgestellt, was aufgrund ihrer linearen Entwicklung darauf hinweist, dass die Hyperglykämie schon Jahre vor der Diagnosestellung bestand [49].

Eine weitere Ursache für die späte Diagnosestellung kann auch darin liegen, dass die Diagnose des DM mit verschiedenen Methoden unterschiedliche Ergebnisse bringt: Eine Metaanalyse von 20 europäischen Studien zeigte, dass eine Untersuchung der Nüchternglucose allein 31% weniger Patienten identifizierte als eine Untersuchung des OGGT mit 75g Glucose nach 2h [26].

Erkrankungsbezogene Parameter

Größe, Gewicht, BMI: Bei einer mittleren Größe von 166±9,63 cm lag das Gewicht der teilnehmenden Patienten im Mittel bei 80±15,35 kg. Der BMI lag entsprechend mit 29±5,68 kg/m² an der Obergrenze der Präadipositas nach der internationalen Gewichtsklassifikation (siehe Tabelle 9). Die Gewichtsreduktion ist also in dieser Befragung für 44 Patienten (80%) ein wichtiges Behandlungsziel; ein Patient mit Adipositas III° kann nicht einbezogen werden, wie im Folgenden noch ausgeführt wird), insbesondere da sie zu einer Senkung der Hyperglykämie führen kann. In der Literatur finden sich ebenfalls Angaben von 80% übergewichtigen Typ-2-Diabetikern [67, 99]. Weitere Untersuchungen von deutschen Typ-2-Diabetikern aus dem Jahr 2000 ergaben ebenfalls einen mittleren BMI von ca. 30 kg/m² [102, 122]. Bei den 5.102 Patienten der UKPDS [123] war der mittlere BMI bei Rekrutierung mit 27 kg/m² etwas niedriger als bei den Patienten der vorliegenden Studie. In drei Monaten mit Diät und monatlicher Diätberatung konnte eine mittlere Gewichtsreduktion um 4 kg und die Senkung des Nüchternblutzuckers um ca. 60 mg/dl erreicht werden, was bei 18% der Teilnehmer therapeutisch ausreichend war. Da es sich bei den Befragten in der vorliegenden Studie vorwiegend um Patienten mit regelmäßiger ärztlicher Betreuung handelt, scheint hier entweder weniger Wert auf Gewichtsreduktion gelegt zu werden, oder die Möglichkeit zu einer regelmäßigen Diätberatung nicht gegeben, nicht gefragt oder nicht umgesetzt zu sein. Beim Vergleich mit der UKPDS ist aber zu berücksichtigen, dass es sich bei den dort untersuchten Patienten um insgesamt jüngere und geständere Patienten (unter 65 Jahren und ohne schwere Komplikationserkrankungen wie Myokardinfarkt, Angina pectoris und Herzinsuffizienz) handelte, als bei den durchschnittlichen Patienten mit Diabetes mellitus in deutschen Hausarztpraxen [18, 122].
Der höchste BMI von 50,3 kg/m² lag bei einem Patienten mit Typ-1-Diabetes vor, bei dem aus einer Randbemerkung hervorging, dass seine Unterschenkel amputiert wurden. Dementsprechend ist die Formel zur Berechnung des BMI nicht auf ihn anwendbar und dieser Wert als Ausreißer zu werten. Wird dieser Patient bei der Berechnung der Mittelwerte von Größe, Gewicht und BMI weggelassen, so ändert das die Ergebnisse jedoch nur im Bereich der ersten Dezimalstelle nach dem Komma, lediglich die Standardabweichung des BMI geht von ±9,63 auf ±8,25 zurück. Berechnet man den BMI mit zusätzlichen 40 cm Körpergröße, so hätte der Patient immer noch einen BMI von 29,7 kg/m² und damit eine Präadipositas an der Grenze zur Adipositas I°.

Blutzucker- und HbA₁c-Messungen: Die angegebene letzte Blutzuckerbestimmung lag in 71,4% der Fälle weniger als ein Vierteljahr zurück. Dies ergibt zusammen mit Randbemerkungen aus den Fragebögen, nach denen auch täglich oder mehrmals täglich (selbst) gemessen wird, einen Überblick über die Kontrolle von Blutzuckerspiegel und HbA₁c, die bei Typ-2-Diabetikern einmal im Quartal erfolgen sollte. Selbstmessungen bei Typ-2-Diabetikern, die hier nicht explizit abgefragt wurden, jedoch aus Randbemerkungen zu entnehmen waren, wurden in anderen Untersuchungen in 22% festgestellt [122]. Messungen, die über ein Jahr zurückliegen, wurden in keinem Fall angegeben, passend zur Diagnosestellung durch die Messung des Blutzuckerspiegels gab es auch weder die Angaben “noch nie” noch “weiß nicht”. Die Messung des HbA₁c wurde in etwas größeren Zeitabständen vorgenommen. Mit Messungen bei 48,6% im letzten Vierteljahr und 7,1% im letzten halben Jahr war die HbA₁c-Kontrolle zufriedenstellend, hier gab es aber auch einen Patienten, dessen HbA₁c noch nie bestimmt wurde und einen höheren Anteil, der es nicht wusste (12,9%).

Die Messergebnisse lagen - soweit bekannt - bei den befragten Patienten in 14,3% mit unter 126 mg/dl, in 17,1% mit bis 140 mg/dl in einem guten Bereich. Die größte Gruppe (34,3%) war dagegen mit bis 200 mg/dl nicht zufriedenstellend eingestellt. Ein recht kleiner Anteil von 5,7% gab Werte über 200 mg/dl an. Unter den Ergebnissen können natürlich auch - eventuell selbst durchgeführte - Messungen bei nicht nüchternen Patienten genannt worden sein. Die HbA₁c-Werte waren bei 14% der Patienten mit bis 6,5% in einem sehr guten, bei 22,9% der Patienten mit bis 8% in einem guten bis zufriedenstellenden Bereich. Nur ein Patient gab einen Wert bis 10% an. Beim HbA₁c war die Unkenntnis der Werte allerdings höher als bei den Blutzuckerwerten (35,7%). In 2,9% der Fälle wurde auch “trifft nicht zu” angekreuzt, so dass die Ergebnisse dieser Frage (auch durch die geringe Abstufung) sich nur bedingt mit anderen Untersuchungen vergleichen lassen, in denen der mittlere HbA₁c mit 7,1% [102] bis 7,2% [122] angegeben war. Der Anteil nicht beantworteter Fragen lag für Blutzucker und HbA₁c jeweils bei 22,9%.

Mit einem angestrebten HbA₁c von < 8% (was nach der Formel von Goldstein et al.: mittlerer Blutzucker = 30,9 x HbA₁c - 60,6 [45] einem durchschnittlichen Blutzucker von < 185 mg/dl entspricht) war der Großteil der Typ-2-Diabetiker ausreichend eingestellt. Eine strengere Blutzuckerkontrolle hatte sich in der UKPDS zwar als effizient bei der Senkung mikrovaskulärer, jedoch nicht makrovaskulärer Ereignisse und im Gegensatz zur strengeren Blutzuckerkontrolle nicht als mortalitätsenkend erwiesen [124, 126]. Die Lebensqualität wurde dadurch ebenfalls nicht beeinflusst [127]. So wird im Rahmen des DMP Diabetes eine individuelle Festlegung der Normwerte angestrebt, beispielsweise die ermgaschigere Kontrolle und strengere Einstellung von jüngeren Patienten [118]. Bei Patienten über 75 Jahren ist dagegen das Auftreten eines Teils der diabetischen Komplikationen unwahrscheinlich. Dies gilt besonders, wenn sie bisher nicht bestanden, da die Entwicklung dieser Krankheiten häufig über einen längeren Zeitraum verläuft [128, 129]. Die Übertragbarkeit der Daten aus bisherigen Studien auf den “durchschnittlichen” Typ-2-Diabetiker in der Hausarztpraxis ist auch wegen des höheren Durchschnittsalters und der höheren Morbidität nur begrenzt möglich [122]. So können hier großzügigere Maßstäbe angelegt werden als nach den (altersunabhängig gegebenen) Empfehlungen der European Diabetes Policy Group, nach denen schon nüchtern-Blutzuckerswerte von 110-140 mg/dl als mäßig und Werte über 140 mg/dl als schlecht...
eingestellt gelten. Der HbA1c-Wert gilt nach diesen Empfehlungen mit 6,5-7,5% bereits als mäßig, über 7,5% als schlecht eingestellt [32].

Blutdruckmessungen: Bei 71,4% der Patienten wurde den DMP-Leitlinien gemäß im empfohlenen Abstand von einem Vierteljahr gemessen. Bei je 2,9% der Patienten lag die letzte Messung ein halbes oder ein ganzes Jahr zurück, die übrigen 22,9% machten keine Angabe. Ob die Werte in der vorliegenden Studie aber vom Hausarzt, zuhause oder auch in Apotheken gemessen wurden, ist nicht nachzuvollziehen. Einige der Teilnehmer erwähnten Selbstmessungen, in einem Fall sogar “täglich”. Die Werte lagen bei 35,7% im angestrebten Bereich unter 140 mmHg, mit weiteren 12,9% unter 160 mmHg waren weniger als die Hälfte der Patienten gut bis ausreichend eingestellt. In einer Studie im Raum München wurde bei Typ-2-Diabetikern (mittleres Alter 61 Jahre, 39 bis 75 Jahre) ein mittlerer systolischer Blutdruck von 164 mmHg, (140-186 mmHg) festgestellt [114]. Zielwerte nach der European Diabetes Policy Group: <130/80 mmHg gut, 140/90-160/95 mmHg mäßig, >169/95 mmHg schlecht [32].
Die Reduktion der kardiovaskulären Morbidität und Mortalität durch Blutdruckkontrolle wurde für Typ-2-Diabetiker in der UKPDS eindrucksvoll belegt. Der Einschluss in den Hypertensions-Arm der Studie erfolgte bei unbehandelten Patienten bei RR systolisch ab 160 mmHg oder bei Werten ab 150 mmHg unter antihypertensiver Therapie [125, 126]. Auch hier besteht - ähnlich wie bei der Gewichtsreduktion - noch Verbesserungsbedarf bei den befragten Diabetikern.

Cholesterinbestimmung: Der Cholesterinwert wurde bei 55,7% im letzten Vierteljahr bestimmt, je 7,1% gaben Messungen in den letzten halben oder ganzen Jahr an. Weitere 7,1% kannten den Zeitpunkt nicht, 20% machten keine Angabe. Die nächste Frage verlangte eine Einordnung des Wertes in die Kategorien “niedrig”, “normal” und “hoch” mit der Möglichkeit, zusätzlich den tatsächlichen Wert einzutragen. 50% der Patienten gaben eine Einschätzung ihres Wertes an, nur 7 Patienten (10%) trugen zusätzlich einen Wert ein, der wiederum in nur 4 Fällen (57%) richtig eingeordnet wurde. Dies zeigt einen sehr geringen Kenntnisstand sowohl der eigentlichen Werte als auch hinsichtlich ihrer Interpretation. Eine differenzierte Einschätzung würde natürlich die Erfassung von HDL- und LDL-Cholesterin erfordern, die Briefbefragung in der vorliegenden Form scheint hierfür aber ungeeignet.
Betrachtet man die Einstellung des Cholesterins, so ergeben sich nach den Kriterien der European Diabetes Policy Group [32] in 2,9% eine gute, (<200 mg/dl), in 7,1% eine mäßige Einstellung der Cholesterinwerte (200-250 mg/dl).

Therapie des Diabetes mellitus

Jeder der antwortenden Patienten erhielt eine Therapie, was bei der Auswahl der Patienten mit Hilfe von Rezepten zu erwarten war. In 22,9% wurde Diät als Teil der Therapie angegeben, weitere 48,6% wurden mit Tabletten, 47,1% mit Insulin behandelt. Da Diät für alle übergewichtigen Patienten als erste Therapiemaßnahme und alle weiteren medikamentösen Therapieformen zusätzlich empfohlen werden [53], war die Diät in der Therapie deutlich zu selten und auch unterdurchschnittlich im Vergleich mit anderen Studien repräsentiert. In der Untersuchung von Rothenbach et al. (2000) lag allein der Anteil von nur mit Diät behandelten Patienten bei 32% [102], in der Untersuchung von Uebel (2000) bei 41% [122], ohne dass dadurch eine schlechtere Einstellung der HbA$_1$c-Werte als in der vorliegenden Studie beobachtet wurde. Bei der vorliegenden Studie ist jedoch zu beachten, dass Patienten, die nur diätetisch behandelt werden, auf Grund der Auswahl der Patienten nach Rezept nicht eingeschlossen sein sollten.

Betrachtet man die Anzahl der Antidiabetika pro Patient, so hatten 32 der antwortenden Patienten (57,1%) einen Therapieansatz, 21 Patienten (37,5%) zwei Therapieansätze und 3 Patienten (5,4%) drei Therapieansätze. Die durchschnittliche Anzahl lag bei 1,5 Therapieansätzen pro Patient. Da hier aus den genannten Gründen die Diät allein als Therapie wegfällt, sind diese Ergebnisse nicht direkt vergleichbar mit anderen Untersuchungen an Typ-2-Diabetikern, bei denen 41% diätetisch behandelt wurden und 36% eine Monotherapie sowie 24% eine Kombitherapie (davon 3% eine Dreifach-, 0,4% eine Vierfach-Therapie) erhielten [122].

Bei der Auswertung nach Diabetes-Typ fiel auf, dass ein Typ-1-Diabetiker angab, nur Tabletten einzunehmen, was entweder auf eine falsche Zuordnung des Diabetes-Typs oder ein fehlerhaftes Ankreuzen hindeutet. Nur zwei der vier Typ-1-Diabetiker gaben Insulin in Kombination mit Diät an, der vierte Typ-1-Diabetiker Insulin allein. Bei den Typ-2-Diabetikern war die Therapie im Hinblick auf Diät ähnlich mangelhaft. Ein Patient (1,4%) gab Diät allein an, die Kombination von Tabletten oder Insulin mit Diät wurde in nur 25,7% angegeben, d.h. weniger als die Hälfte der Patienten wurden in dieser Hinsicht korrekt behandelt. Allerdings ist die Compliance bei Maßnahmen, die die Änderung des eigenen Verhaltens erfordern, leider oft gering [43, 48]. Besonders Typ-2-Diabetiker, die ihre Krankheit als “mildes Alterszucker” unterschätzen, schränken ihre Ernährungsgewohnheiten nur ungern ein. Der Begriff der Compliance muss allerdings differenziert betrachtet werden, da trotz exakter Insulintherapie Ernährung und Bewegung vernachlässigt werden können und umgekehrt. Die “bequemere” medikamentöse Behandlung wird jedoch häufiger umgesetzt als die Umstellung der Lebensgewohnheiten [43, 100].

In der vorliegenden Studie sollten 80% der antwortenden Patienten Gewicht abnehmen, Untersuchungen von Reinecker an Typ-2-Diabetikern lieferten vergleichbare Zahlen [99]. Ähnlich wie mit dem Blutdruck bei arterieller Hypertonie korreliert das Körpergewicht auch mit dem HbA$_1$c bei Diabetes mellitus (bis zu $r=0,55$) [141], so dass hier ein konservativer Therapieversuch theoretisch erfolgversprechend ist. In der Praxis ist es dagegen schwierig, gemeinsam mit dem Patienten auf eine Verminderung des Körpergewichts hinzuwirken und selbst eine erreichte Gewichtsreduktion kann oft nur kurzfristig gehalten werden, weil die Ess- und Lebensgewohnheiten nicht dauerhaft verändert werden können [89].

Teilnahme an Schulungen

In einer Studie mit Typ-2-Diabetikern und ihren Angehörigen fand Praefcke an einer vergleichbaren Patientengruppe, dass zwar 95% der Patienten von ihrem Hausarzt aufgeklärt wurden, aber viele Fragen zu Diabetes mellitus und seiner Behandlung nicht beantworten konnten [96]. Dies unterstreicht die Wichtigkeit wiederholter Schulungen, die gelernte Inhalte auffrischen und vertiefen. Darüber hinaus gilt natürlich, dass Wissen allein nicht zur Verhaltensänderung führt [14, 19]. Es geht vielmehr auch darum, dass sich Patienten mit chronischen Erkrankungen verstanden und unterstützt fühlen, um erfolgreich ihr Verhalten ändern zu können [137].

Besonders für Typ-1-Diabetiker wird innerhalb des ersten Jahres der Besuch einer Schulung empfohlen [7], was zum einen durch den Umgang mit Insulin erforderlich ist, aber auch den lebenslangen Umgang mit der Krankheit schon zu Beginn steuern helfen kann. Dies ist jedoch nicht immer gegeben: An einer Gruppe von ca. 1.000 Typ-1- und Typ-2-Diabetikern in einer Rehabilitations-Klinik wurde eine Befragung zu bisherigen Schulungen durchgeführt. Das durchschnittliche Alter betrug 42 (Typ 1) und 54,6 (Typ 2) Jahre, die Erkrankungsdauer 19,4 (Typ 1) und 9,4 (Typ 2) Jahre. 16,3% der Typ-2- und 10,1% der Typ-1-Diabetiker gaben an, bei Diagnosestellung keine Informationen zu ihrer Erkrankung erhalten zu haben. 48,9% der Typ-1- und 63,3% der Typ-2-Diabetiker gaben an, “zum Teil” (z.B. mit Broschüren) und nur 34,8% Typ-1- bzw. 26,7% Typ-2-Diabetiker erklärten, “ausführlich” informiert worden zu sein [131]. Im Vergleich dazu nahmen 66% der Typ-1-Diabetiker und 52% der Typ-2-Diabetiker aus der hier befragten Gruppe an Schulungen teil. Die Angabe ist für die Typ-1-Diabetiker durch die geringe Patientenzahl nur bedingt aussagekräftig.

Angaben zu Arztkontakten

75,7% der Patienten gaben an, im letzten Monat beim Arzt gewesen zu sein, je 22,9% und 15,7% sogar “bis dreimal” und “über dreimal”, nach Randbemerkungen fielen auch Hausbesuche darunter. Nur 4,3% waren nicht beim Arzt. Stationäre Aufenthalte wurden im letzten Jahr von 20% der Patienten angegeben, davon 7,1% bis dreimal, 1,4% sogar über dreimal. Dies übertrifft die Angaben von Harris [50], der mindestens vier Arztkontakte pro Jahr angibt, spiegelt aber auch die aktuelle Entwicklung hin zu mehr Vorsorgeuntersuchungen, Laborkontrollen etc. wider. Für Typ-2-Diabetiker in Deutschland wurden beispielsweise jährlich im Mittel 28 Praxiskontakte erfaßt [122]. Nach Fachärzten aufgeschlüsselt ergibt sich folgendes Bild: der Hausarzt wurde von 74% der Patienten im letzten Vierteljahr besucht, von je einem Patienten (1,4%) im letzten Halbjahr oder Jahr. Längere Intervalle oder “noch nie” wurden in keinem Fall angegeben.

Ophthalmologen wurden von 70% der Patienten im letzten Jahr, von weiteren 2,9% in den letzten zwei oder in 7,1% vor mehr als zwei Jahren besucht, kein Patient gab an, noch nie beim Augenarzt gewesen zu sein. Damit erfüllten 70% die Forderung nach jährlichen Kontrollen des Augenhintergrundes, die in Deutschland in der Regel vom Augenarzt durchgeführt wird. Anders ausgedrückt wären nur 10% der Patienten, die eine Angabe gemacht haben, durch die eingeführte Empfehlung jährlicher Kontrollen zusätzlich profitieren. Allerdings kann keine Aussage über die nicht teilnehmenden Patienten getroffen werden, bei denen eventuell insgesamt auch von einer schlechteren Compliance und medizinischen Betreuung ausgegangen werden muss.

Insgesamt bestätigen die Ergebnisse der Befragung die zentrale Rolle des Hausarztes in der Diabetikerver-
sorgung. Aber auch in der Gesamtbevölkerung ist der Hausarzt für die Mehrheit der erste Ansprechpartner, wie eine von der Kassenärztlichen Bundesvereinigung in Auftrag gegebene repräsentative Befragung der deutschen Bevölkerung zwischen 18 und 79 Jahren 2006 ergab: 82% waren im letzten Jahr beim Hausarzt, 42% davon nur beim Hausarzt, 17% nur beim Facharzt, 41% besuchten sowohl den Hausarzt als auch einen Facharzt [65].

Auch das Ausfüllmuster am Beispiel des letzten Arztkontaktes ist interessant: Beim Hausarzt und Neurologen kreuzten jeweils 22,9% keine Antwort an, beim Augenarzt dagegen nur 20% und beim Diabetologen 25,7%. Dies lässt zusammen mit dem beim Diabetologen am häufigsten angegebenen “weiß nicht” Unsicherheit über die Bezeichnung “Diabetologe / Schwerpunktpraxis für Diabetiker” als Ursache für die höhere Quote fehlender Antworten vermuten.

Die Zufriedenheit mit den behandelnden Ärzten war gut. Bei den Augenärzten (61,6%) und den Hausärzten (60%) gaben die meisten Patienten an, sehr zufrieden zu sein, für die Diabetologen und Neurologen traf dies in 30% bzw. 12% zu. Bezogen auf die Zahl derer, die jeweils bei den jeweiligen Ärzten waren (also ohne leere Antwortfelder und abzüglich derer, die beispielsweise nie beim Neurologen waren und “trifft nicht zu” angegeben haben) war die Zufriedenheit noch höher: Je 77,7% waren sehr zufrieden mit dem Hausarzt und dem Diabetologen, 64,3% mit dem Augenarzt und 60% mit dem Neurologen. In einer Umfrage der Kassenärztlichen Bundesvereinigung ergab sich ebenfalls eine hohe Zufriedenheit: 90% der Patienten schätzten die jeweilige Leistung des Arztes als gut oder sehr gut ein, 15% gaben an, Ursache zu Beschwerden zu haben [65]. Dass sich gute Arzt-Patient-Beziehungen und die Zufriedenheit mit der medizinischen Versorgung positiv auf das Selbst-Management der Patienten und damit auch auf das Diabetes-Outcome auswirken, wurde bereits durch Studien bestätigt [44, 101].

Angaben zum Krankenhausaufenthalt

20% der Patienten wurden im letzten Jahr stationär behandelt, 8,6% der Patienten mehrmals. Dem gegenüber waren 60% nicht in stationärer Behandlung. Vergleicht man die Frage mit dem Zeitpunkt des letzten Krankenhausaufenthalts, so zeigt sich, dass ein Patient die Frage nicht konsistent beantwortet hat, da hier 21,4% im letzten Jahr, 41,4% vor über einem Jahr stationär behandelt wurden und weitere 7,1% den Zeitpunkt nicht kannten. 12,9% waren nie im Krankenhaus. Andere Untersuchungen in Hausarztpraxen ergaben, dass immerhin 8% der Typ-2-Diabetiker spezifisch wegen ihres Diabetes mellitus oder seiner Folge- bzw. Begleiterkrankungen im letzten Jahr stationär behandelt wurden [122].

Die Zufriedenheit war im stationären Bereich mit 32,9% sehr zufriedenen Patienten niedriger (ohne die Patienten, die nie im Krankenhaus waren oder keine Antwort ankreuzten sind es 46,9%) als im ambulanten Sektor. Es gab aber keinen Patienten, der überhaupt nicht zufrieden war. Stationär spielen allerdings auch Faktoren wie die Qualität der Unterbringung im Krankenzimmer, Essen oder Kontakt mit eventuell mehrfach wechselnden Ärzten eine Rolle, die in die Beurteilung einfließen und durch den längeren Aufenthalt stärker ins Gewicht fallen als, vergleichbare Einflüsse in der Praxis (beispielsweise Praxisambiente, Wartezeiten, Freundlichkeit der Mitarbeiter). So sind die Zahlen für den stationären und ambulanten Bereich nur bedingt vergleichbar, geben aber den Eindruck der Patienten wieder.

Angaben zur Zufriedenheit mit der medizinischen Therapie insgesamt

Mit 48,6% sehr und 24,3% mäßig zufriedenen Patienten wurde die Therapie des Diabetes mellitus allgemein gut eingeschätzt. Ein Patient mit Typ-2-Diabetes unter alleiniger Insulintherapie gab an “trifft nicht zu”, hier ist am ehesten von einem Verständnisproblem auszugehen. Je ein Patient war wenig oder gar nicht zufrieden.
4.2.4 Metafragen

Meinung der Patienten zur Befragung: Mit 63,3% fand die Mehrheit der Patienten die Durchführung dieser Befragung gut (50%) bis sehr gut (14,3%). „Gleichgültig“ wurde von 7,1%, „weiß nicht“ von 8,6% angekreuzt. Als „schlecht“ wurde die Befragung dagegen in keinem Fall beurteilt.

Benötigte Hilfe beim Ausfüllen: Weniger als die Hälfte (47,1%) der Patienten konnten den Fragebogen ohne Hilfe ausfüllen. Jeweils 18,6% und 17,1% benötigten „etwas“ oder „viel Hilfe“. Diese Frage wurde mit 17,1% leeren Antwortfeldern etwas überdurchschnittlich häufig ausgefüllt, der Fragebogen wurde also auch von Teilnehmern, die den Fragebogen nicht vollständig beantwortet haben, bis zum Ende durchgelesen. Ein kürzerer Fragebogen könnte die Bereitschaft zur Teilnahme an Folgebefragungen erhöhen. Die bereits angesprochene computergestützte Patientenbefragung, die je nach Präsentation auch von hochbetagten Patienten gern akzeptiert wird [109] ist ebenfalls eine Alternative, die in der Regel vollständigere Daten liefert, aber außer über Internet nicht ortsunabhängig verfügbar ist.

Teilnahme an Folgebefragungen: Knapp die Hälfte der Patienten (45,7%) wollte für eine Folgebefragung wieder angeschrieben werden, 11,4% war es gleichgültig, 27,1% wollten nicht wieder angeschrieben werden. Verglichen mit der Beurteilung der Befragung bedeutet das, dass auch Teilnehmer, die die Befragung „gut“ oder „sehr gut“ beurteilt haben, unter anderem aus gesundheitlichen Gründen nicht mehr angeschrieben werden wollten (siehe unten) oder einer weiteren Befragung gleichgültig gegenüberstehen. Für erneute Befragungen sollte daher eine Liste der Patienten zusammengestellt werden, die nicht wieder an einer Befragung teilnehmen möchten, um die Teilnahmewahrscheinlichkeit zu erhöhen. Auch diese Frage wurde mit 15,7% leeren Antwortfeldern von verhältnismäßig vielen Patienten ausgefüllt. Gründe für den Wunsch, an einer Folgebefragung nicht teilzunehmen, fanden sich bei einigen Patienten im Freitextfeld der folgenden Frage.

geringe Erfahrung der Patienten mit dieser Art von Befragungen. Der größte Teil der antwortenden Patien-
ten füllte den Fragebogen jedoch auch aus. Nur ein kleinerer Teil der Patienten (je nach Frage um
20%), die den Fragebogen nicht ausfüllen wollten, machte sich die Mühe, ihn mit einer Erklärung ihrer
Ablehnung zurückzuschicken.

Ein Patient, der einen leeren Fragebogen zurückschickte, schrieb „ich habe noch kein Diabetes“. Die Gründe
dafür können, wie bereits aufgeführt, verschiedener Art sein. Von Seiten der Patientenauswahl kann es
an einem mangelhaften Suchalgorithmus oder Rezeptfehlern, von Seiten der Teilnehmer an einem Mangel
von Kenntnissen der eventuell fehlender Krankheitsinsicht liegen. Alle diese Umstände können unter
den nicht antwortenden Patienten natürlich auch vorgekommen sein, so dass in dieser Gruppe noch mehr
Patienten sein können, die nicht an Diabetes erkrankt sind oder sich nicht für Diabetiker halten.

4.3 Beziehungen zwischen den Daten

4.3.1 Vorbemerkung

Alle nachfolgenden Betrachtungen zu den gefundenen Korrelationen stehen unter verschiedenen Vorbehal-
ten: Zunächst wurde die zugrundeliegende Studie mit dem Ziel durchgeführt, im Sinne einer Pilotstudie
die Machbarkeit einer solchen Befragung und die grundlegende Plausibilität der erhobenen Daten zu
untersuchen. Eine prospektive Formulierung von zu beweisenden Hypothesen wäre in diesem Stadium
verfrüht gewesen und ist dementsprechend auch nicht erfolgt. Aufgrund der Literatur und persönlicher
Einschätzung waren in bestimmten Bereichen deutliche Korrelationen erwartet worden, in anderen Berei-
chen hätten sie überrascht, dennoch wurden dem orientierenden, explorativen Charakter der vorliegenden
Arbeit entsprechend die Beziehungen aller Variablen zueinander überprüft. Diese Vorgehensweise sorgt
zwar dafür, dass auch völlig unerwartete Zusammenhänge entdeckt werden, als unerwünschter Nebeneffekt
cönnen jedoch auch Scheinzusammenhänge gefunden werden. So können z.B. selbst hochsignifikant er-
scheinende Zusammenhänge dennoch in Wirklichkeit zufällig aufgetreten sein oder umfangreiche, plausibel
erscheinende Muster von Zusammenhängen lediglich durch die gleichförmige Wirkung von unbekannten
Variablen auf mehrere der hier betrachteten Parameter vorgetäuscht werden.

In diesem Sinne ist die nachfolgende Diskussion einerseits eine Untersuchung gefundener oder fehlender
Zusammenhänge auf Plausibilität, anderseits kann sie dazu beitragen, Hypothesen für zukünftige For-
schungsarbeiten zu generieren. In keinem Fall wäre es jedoch gerechtfertigt, aus den hier gezeigten und
diskutierten Daten endgültige Aussagen abzuleiten.

4.3.2 Korrelationen innerhalb der soziodemographischen Daten

Die innerhalb der soziodemographischen Daten beobachtete mäßige starke Korrelation zwischen Alter und
Art der Tätigkeit beschreibt die Tatsache, dass die älteren Patienten eher im Ruhestand, die jüngeren eher
berufstätig sind. Der Zusammenhang zwischen Alter und Familienstand war schwächer ausgeprägt, was u. a. daran liegen mag, dass die Antwortmöglichkeit „geschieden / getrennt lebend“ zwischen „verheiratet“
und „verwitwet“ in die Korrelationskodierung einging (vgl. Abschnitt 3.3.1).

4.3.3 Korrelationen innerhalb der Ergebnisse zur Lebensqualität

Beinahe alle Dimensionen des LQ-Fragebogens korrelierten signifikant oder hoch signifikant miteinander.
Lediglich Diarrhoe und QL, Müdigkeit und Dyspnoe sowie Obstipation und QL zeigten keine signifikante
Korrelation. Die Stärke aller gefundenen Korrelationen lag zwischen $\rho=0,3$ und $\rho=0,8$. Die dabei überwie-
gend mäßig starken Korrelationen ($\rho=0,5$ bis $\rho=0,6$) zwischen den Skalen unterstützen die Annahme, dass
alle abgefragten Funktions- und Symptombereiche für die Beschreibung der gesundheitsbezogenen LQ der
untersuchten Patientenpopulation relevant sind und dass sich die untersuchten Dimensionen wie erwartet in einem gut erkennbaren, jedoch nicht völlig festen Zusammenhang gemeinsam verbesserten oder verschlechterten. Der Zusammenhang zwischen Dyspnoe und Müdigkeit ($\rho = 0.65$, $p = 0.000$) ist beispielsweise deutlich stärker als der zwischen Dyspnoe und Diarrhoe ($\rho = 0.15$, $p = 0.27$). Diese Befunde sowie die Werte für Cronbach’s α innerhalb der einzelnen Dimensionen sind mit den Erwartungen an den Fragebogen und mit Ergebnissen früherer Validierungsuntersuchungen gut vereinbar. Die Polung der Korrelationen (also positiver oder negativer Zusammenhang) entspricht durchweg den Erwartungen: hohe Symptome führten in variabler Ausprägung zu eingeschränkten Funktionen. So korrelierte das Symptom Dyspnoe beispielsweise negativ mit allen Funktionen, wirkte sich aber stärker auf die körperliche Funktion, die Rollenfunktion und die emotionale Funktion aus ($\rho = -0.56$ bis $\rho = -0.6$, $p = 0.000$) als auf die kognitive, die soziale Funktion oder die Lebensqualität ($\rho = -0.3$ bis $\rho = -0.39$, $p = 0.004$ bis $p = 0.03$).

4.3.4 Korrelationen innerhalb der diabetesbezogenen Fragen

Ein erwarteter Zusammenhang zwischen Diabetestyp und der Dauer der Erkrankung im Sinne einer längeren Erkrankungsdauer bei Typ-1-Diabetes ließ sich in der kleinen untersuchten Population nicht nachweisen ($\rho = -0.10$, $p = 0.45$). Ein Zusammenhang im Sinne einer besseren Einstellung der Werte bei Typ-1-Diabetikern fand sich nur schwach für den Blutzucker ($\rho = 0.31$, $p = 0.03$). Da sich unter den Befragten jedoch nur 4 Typ-1-Diabetiker befanden, ist dies nur eingeschränkt aussagekräftig. Betrachtet man den BMI in Abhängigkeit von der Erkrankungsdauer (vgl. Tabelle 25), so zeigte sich zunächst in der Gruppe der seit 1-5 Jahren diagnostizierten Patienten ein leichter Rückgang des Gewichts im Vergleich zur Gruppe der seit bis zu einem Jahr diagnostizierten Patienten, der allerdings auch mit einer größeren Standardabweichung einherging. Dies kann als teilweise erfolgte Gewichtsreduktion nach Diagnosestellung interpretiert werden. Im weiteren Verlauf stieg das Gewicht dann wieder geringfügig, aber homogen an, um in der Gruppe mit der längsten Erkrankungsdauer wieder abzunehmen. Dieses letzte Ergebnis kann dahingehend interpretiert werden, dass es mit zunehmender Dauer letztendlich zu einer leichten Gewichtsreduktion kam oder aber, dass die so lange überlebenden Diabetiker weniger übergewichtig waren.

Mit steigender Erkrankungsdauer war kein signifikanter Trend zu besseren oder schlechteren Blutzucker- oder Cholesterinwerten nachweisbar. Lediglich der Blutdruck wies eine geringe Tendenz zur schlechteren Einstellung bei längeren Erkrankungsdauern auf ($\rho = -0.29$, $p = 0.045$). Dies kann in Bezug auf BZ, HbA$_{1c}$ und Cholesterin positiv bewertet werden, da bei erfolgreicher Therapie auch bei längerer Erkrankungsdauer eine gleichbleibende, möglichst gute Einstellung gegeben sein sollte.

Die Zeitpunkte der letzten Messung von Blutzucker, HbA$_{1c}$, Blutdruck und Cholesterin korrelierten alle positiv miteinander (vgl. Tabelle 22). Der Zusammenhang zwischen der letzten Messung des HbA$_{1c}$ und RR sowie Cholesterin war dabei höher als die Zusammenhänge anderer Messungen miteinander. Dies kann daran liegen, dass die Kontrolle des HbA$_{1c}$ auch die Kontrolle der Parameter Blutdruck und Cholesterin nach sich zog, bzw. dass diese Messungen andernfalls alle drei schon länger zurücklagen, während der Blutzucker bei den Diabetikern auch währenddessen, beispielsweise von Patienten selbst kontrolliert wurde. Ein schwacher Trend ($\rho = 0.18$, $p = 0.35$ n.s.) bestand noch zwischen letztm Mal der Messung der HbA$_{1c}$-Wert geringfügig ab. Das deutet an, dass mit der engeren Kontrolle ein niedrigerer HbA$_{1c}$-Wert eingehend. Bei den anderen Parametern war der Zusammenhang zwischen Zeitpunkt der letzten Messung und der Höhe des Messwertes vollends so schwach, dass es sich hier am wahrscheinlichsten überwiegend um Routinediagnostik handelte, die im gewünschten Zeitraum und nicht zielgerichtet bei Erwartung erhöhter Werte vorgenommen wurde. Würden sie nur bei begründetem Verdacht auf eine Stoffwechselverschlechterung oder einen Anstieg des Blutdrucks kontrolliert, so sollte hier ein stärkerer Zusammenhang beobachtbar sein. Ein signifikanter Zusammenhang zwischen besonders häufig untersuchten und besonders gut eingestellten Patienten ließ sich aus diesen Daten nicht feststellen. Es erschien auch kein Zusammenhang zwischen der Höhe des HbA$_{1c}$...
und der Inanspruchnahme des Diabetologen. Ohne einen Zeitverlauf der Werte lässt sich nicht unterschei-
den, ob die Überweisung wegen schlechter Werte erfolgte und deshalb eine Korrelation von hohen Werten
und Aufsuchen des Diabetologen auftrat oder ob durch die diabetologische Behandlung bereits eine Ver-
besserung der Werte erfolgte und daher das Aufsuchen eines Diabetologen mit guten Werten korrelierte.
Weitere Faktoren, die die schwachen Korrelationen begünstigten, waren auch die geringe Patientenzahl,
die grobe Abstufung der Zeiträume und die bei Beobachtung der gegebenen Antworten begrenzte Zuver-
lässigkeit der Einzeldaten. Zwischen dem Zeitpunkt des letzten Besuches bei den Fachärzten und letzten
Messungen von Labor- und Blutdruckwerten zeigte sich wie erwartet ein positiver Zusammenhang. Au-
ferner zeichnete sich ein Trend zu mehr Medikamenten bei zunehmender Erkrankungsdauer sowie eher
kürzer zurückliegenden Messungen ab, ohne dass jedoch ein Einfluss auf die Höhe des HbA1c erkennbar
würde (vgl. Tabelle 23).

Die Einstellung der Werte zeigte in dieser Befragung nur zwischen Blutdruck und Blutzucker einen mäßig
starken signifikanten Zusammenhang (ρ=0,48, p=0,001). Die anderen Werte wiesen nur sehr schwache
positive Korrelationen mit ρ um 0,1 bis 0,2 auf und waren auch nicht signifikant. Dies wurde vermutlich
auch durch die geringe Patientenzahl, die grobe Abstufung der Zeiträume und die bei Beobachtung der gegebenen Antworten begrenzte Zuver-
lässigkeit der Einzeldaten. Zwischen dem Zeitpunkt des letzten Besuches bei den Fachärzten und letzten
Messungen von Labor- und Blutdruckwerten zeigte sich wie erwartet ein positiver Zusammenhang. Au-
ferner zeichnete sich ein Trend zu mehr Medikamenten bei zunehmender Erkrankungsdauer sowie eher
kürzer zurückliegenden Messungen ab, ohne dass jedoch ein Einfluss auf die Höhe des HbA1c erkennbar
würde (vgl. Tabelle 23).

Die Zufriedenheit der Patienten mit den verschiedenen Fachärzten und dem Krankenhaus zeigte unter-
einander einige schwache positive Korrelationen (siehe Tabelle 24), die stärksten Korrelationen bestanden
zwischen Zufriedenheit mit dem Diabetologen und Augenarzt (ρ=0,86, p=0,0) sowie dem Augenarzt und
dem Neurologen (ρ=0,69, p=0,002), was auf eine Patientengruppe zurückgehen kann, die eine Betreuung
durch den Facharzt schätzt. Mit steigender Zufriedenheit ließ sich auch ein Trend zu häufigeren bzw.
kürzer zurückliegenden Arztkontakten feststellen, der beim Diabetologen am stärksten ausgeprägt war
(ρ=-0,508, p=0,006, vgl. Tabelle 24). Dies spricht dafür, dass Patienten eine engere zeitliche Kontrolle
und eine gute Einstellung der Werte durch die behandelnden Ärzte positiv bewerten. Oder aber: Zufrie-
dene Patienten sind wahrscheinlicher compliant und werden daher häufiger kontrolliert und sind besser
eingestellt. Auch die Zufriedenheit mit der Therapie insgesamt korrelierte positiv schwach bis mäßig stark
mit der Zufriedenheit mit Hausarzt, Diabetologe und Augenarzt (siehe Tabelle 24). Die stärkste Korre-
lation trat dabei mit dem Diabetologen auf (ρ=0,52, p=0,006), was damit zusammenhängen mag, dass
die Frage nach der Zufriedenheit mit der Behandlung des Diabetes gestellt wurde und Patienten, die mit
dem Diabetologen als “zuständigem Facharzt” zufrieden waren, dies auch auf die Therapie übertrugen.

4.3.5 Korrelationen innerhalb der Metafragen

Der Wunsch, an einer Folgebefragung teilzunehmen, korrelierte schwach mit der Meinung zur Befragung
in dem Sinne, dass Patienten, die wieder teilnehmen möchten, den Fragebogen auch positiv bewertet
haben. Ein ebenfalls schwacher Zusammenhang zeigte sich dahingehend, dass Patienten wieder teilnehmen
möchten, obwohl sie viel Hilfe zum Ausfüllen benötigten (beides Tabelle 26). Dies spricht für die in der
Einzelanalyse gefundene gute Akzeptanz der Briefbefragung (siehe Abschnitt 3.2.5). Dass die Korrelation
nicht stärker ausfiel, mag daran liegen, dass ein anderer Teil der Patienten die Befragung zwar positiv
beurteilt hat, jedoch aus gesundheitlichen oder anderen Gründen nicht wieder teilnehmen möchte.

4.3.6 Korrelationen zwischen den Fragebogenteilen

Alter - LQ: Das Alter korrelierte negativ mit allen Funktionen (körperliche, emotionale Funktion etc.)
und positiv mit nahezu allen Symptomen des QLQ-C30, d.h. die Funktionen nahmen mit zunehmendem
Alter ab, Symptome eher zu. Statistisch signifikant war dies für die körperliche Funktion, die Lebensqua-
lität und das Symptom Durchfall (letzteres negativ, was durch die Tendenz zur Obstipation im höheren
Alter erkläbar ist). Die Abnahme der körperlichen Funktion mit dem Alter erscheint plausibel und
entspricht auch den Ergebnissen anderer Lebensqualitätsuntersuchungen, die einen starken Einfluss des Alters beschrieben haben [55, 56, 68, 107].

Schulbildung: Ein unter Umständen zu erwartender Zusammenhang zwischen besserer Schulbildung und mehr Schulungen ließ sich nicht feststellen. Hingegen zeigte sich ein Trend zu besseren Blutzuckereinstellung bei höherer Schulbildung ($p=0,62$, $p=0,019$), wobei das Antwortspektrum in der vorliegenden Stichprobe auf “keinen Abschluss”, “Hauptschulabschluss” oder “Realschulabschluss” beschränkt war. Dies würde für einen Vorteil der besser ausgebildeten Patienten auch in Bezug auf ihr Krankheitsmanagement sprechen, sollte jedoch an Populationen mit sämtlichen möglichen Schul-, Ausbildungs- oder Studienabschlüssen verifiziert werden.

LQ - Diabetesdauer: Zwischen der Diabetesdauer und der Lebensqualität wurde ein Zusammenhang erwartet. Für viele Patienten bedeutet die Diagnose eines Typ-1-Diabetes ein kritisches Lebensereignis, das hauptsächlich mit einer tiefgreifenden Umstellung ihrer Gewohnheiten oder sogar Lebensplanung verbunden ist [74]. Dies legt den Befunden zunächst vor eine schwere Bewältigungsaufgabe. Es ist aber davon auszugehen, dass diese mit zunehmender Krankheitsdauer durch die verbesserte Adaptation leichter fällt. Daher wäre auch in der hier befragten Patientengruppe unter Umständen ein positiver Zusammenhang zwischen Wohlbefinden und der Krankheitsdauer sowie eine negative Korrelation mit Depression und Angst, also der emotionalen Funktion, bei Typ-1-Diabetikern zu erwarten gewesen. Dies ließ sich hier nicht bestätigen, ist durch die geringe Patientenzahl allerdings nur wenig aussagekräftig.

Beim Typ-2-Diabetiker stellt sich das Problem der Krankheitsverarbeitung meist unter umgekehrten Vorzeichen. Viele Patienten begreifen ihre Erkrankung als sogenannten “milden Alterszucker”, für dessen Behandlung keine großen Anstrengungen unternommen werden müssen [51, 74]. Deshalb wird bei Typ-2-Diabetikern im Vergleich zu Typ-1-Diabetikern mit einem höheren Maß an Wohlbefinden und einem geringeren Maß an Angst und Depressivität gerechnet. Allerdings kann dieser Effekt bei Typ-2-Diabetikern durch das Auftreten von Folgeerkrankungen überlagert werden, was unter Umständen auch für die hier befragten Typ-2-Diabetiker zutraf, bei denen weder ein signifikanter noch ein ausgeprägter Zusammenhang zwischen Lebensqualität und Diabetesdauer auftrat.

LQ-Funktionen - diabetesbezogene Fragen: Die Lebensqualitätsfunktionen (körperliche, emotionale, kognitive, soziale Funktion, Rollenfunktion und globale Lebensqualität) korrelierten mit dem Zeitpunkt der letzten Artzkontakte oder Messung verschiedener Werte so, dass höhere Funktionen von Patienten mit länger zurückliegendem Ereignis (z.B. Krankenhaus, Tabelle 28) angegeben wurden. Es bestanden schwache bis mäßige Korrelationen, am relativ stärksten mit dem Zeitpunkt des letzten Krankenhausaufenthalts und des letzten Besuchs beim Neurologen. Da die stationäre Behandlung in der Regel schwerere Krankheitsbilder voraussetzt, ist es auch plausibel, wenn Patienten, die vor kürzerer Zeit im Krankenhaus waren, schlechtere Funktionswerte erreichen. Im Vergleich dazu sind die Korrelationen mit den ambulant erfolgten Untersuchungen etwas schwächer und teils auch negativ gepolt. Die Anzahl der ambulanten Behandlungen zeigte ebenfalls einen schwachen positiven Zusammenhang mit der Rollenfunktion, der
emotionalen Funktion und der sozialen Funktion im Sinne der besseren Funktion bei weniger Behandlungen. Die Anzahl der stationären Behandlungen korrelierte ebenfalls negativ und teils etwas stärker mit einigen Lebensqualitätsfunktionen (beides Tabelle 28). Der positive Zusammenhang zwischen der Zufriedenheit mit Arzt und Therapie kann so interpretiert werden, dass sich diese beiden Faktoren gegenseitig bedingen und verstärken. Da eine geringe Anzahl von Arztkontakten einerseits durch einen zufriedenstellenden Gesundheitszustand bedingt sein kann, andererseits aber eine gute Therapie bei guter Indikation auch eine Besserung erzielen wird, sind diese Korrelationen ohne weitere Informationen nur bedingt aussagekräftig.

Alter - Metafragen: Mit zunehmendem Alter zeigte sich bei den teilnehmenden Patienten ein schwacher bis mäßig starker ($\rho=0.3$ bis $\rho=0.5$, vgl. Tabelle 30) Trend zu einer positiveren Beurteilung der Befragung, gleichzeitig aber eher zum Wunsch, nicht mehr angeschrieben zu werden. Dies ist wahrscheinlich vor allem auf die zunehmend benötigte Hilfe zurückzuführen, die sowohl in der Berechnung der Korrelationen als schwacher Zusammenhang als auch aus Angaben der Patienten in den dafür vorgesehenen Freitextfeldern ersichtlich wurde. Dass das Ausfüllen des Fragebogens für Patienten im höheren Alter eher schwieriger war, zeichnete sich auch am beobachteten mäßig starken Zusammenhang mit einer zunehmenden Zahl fehlender Antworten ab.

LQ - Metafragen: Derselbe Trend zeigte sich mit den QLQ-C30-Skalen: Bei besseren Funktionen und geringeren Symptomen kamen die Patienten auch besser mit dem Fragebogen zurecht ($\rho=0.3$ bis $\rho=0.6$, Einzelheiten und Polung siehe Tabelle 31). Am deutlichsten war der Zusammenhang mit der körperlichen Funktion und der Lebensqualität ($\rho=-0.6$) sowie mit Schmerz und Schlafstörungen ($\rho=0.6$).

ersten beiden Ergebnisse könnten durch höheres Interesse daran, aktiv an der Therapie mitzuwirken - das auch ein Interesse an Patientenbefragungen einschließt - im Zusammenhang mit höherer Zufriedenheit bedingt sein. Der Zusammenhang mit dem Wunsch, wieder teilzunehmen, könnte auch dafür sprechen, dass unzufriedenere Patienten stärker motiviert sind, ihre Meinung zur Behandlung mitzuteilen.

Überblick: Betrachtet man die aufgetretenen Korrelationen zwischen den verschiedenen Fragebogenteilen, so zeigten sich signifikante Korrelationen überwiegend mit der Lebensqualität. Weitere Korrelationen traten mit einzelnen soziodemographischen Variablen oder der Inanspruchnahme von Ärzten auf, jedoch kaum mit "technischen", also labormedizinischen oder physikalischen Variablen (Blutzucker, Blutdruck usw.). Das unterstützt die Annahme, dass Lebensqualitäts-Fragebögen Angaben liefern, die zumindest aus Sicht der Patienten stimmig die gesundheitsbezogene Lebensqualität oder die Krankheit beschreiben. Dies legt nahe, dass Lebensqualitätsdaten auch zur Beschreibung oder Stratifizierung von Patientenpopulationen in zukünftigen Untersuchungen oder im Rahmen der Entscheidungsfindung in der Behandlung nutzbar sein könnten. Dass die abgefragten "technischen" Parameter hier weniger aussagekräftig waren, könnte einerseits an mangelnden oder ungenauen Kenntnissen der Patienten liegen. Andererseits können eben das Krankheitsempfinden, fühlbare Einschränkungen und Symptome, wie sie in LQ-Daten abgebildet werden, wichtiger für die Entscheidung zu einem Arztbesuch sein, als die nicht direkt spürbaren Messwerte (Blutzucker, HbA$_1c$, Blutdruck, Cholesterin).

4.4 Schlussfolgerungen

Die teilnehmenden Patienten waren in Bezug auf Alter, Geschlecht und Ortsverteilung repräsentativ für die gesamte Population der ursprünglich identifizierten Diabetiker. Die Teilnahmequote war vergleichbar mit anderen Befragungen.

Die Ergebnisse der Befragung lieferten in sich plausible Antworten. Der verwendete Lebensqualitätsfragebogen QLQ-C30 wurde ursprünglich für onkologische Patienten validiert, seine Ergebnisse aus der vorliegenden Arbeit und aus anderen Untersuchungen an internistischen Patienten unterstützen jedoch die Annahme, dass er für den Einsatz in allgemeinmedizinischen Untersuchungen geeignet ist.

Im Vergleich mit einigen anderen Patientengruppen zeigten die teilnehmenden Patienten in nahezu allen zur gesundheitsbezogenen Lebensqualität abgefragten Funktionen und Symptomen auch bei vergleichbarem Alter schlechtere Ergebnisse. Die große Bedeutung des Alters im Bereich der Lebensqualität, die auch von anderen Autoren beschrieben wird, war auch in der vorliegenden Arbeit erkennbar. Weitere Parameter, die gut mit der Lebensqualität korrelierten, waren unter anderem die Häufigkeit von Krankenhausaufenthalten, die Vollständigkeit der Fragebögen sowie die zum Ausfüllen benötigte Hilfe.
Die befragten AOK-Patienten gaben ein eher niedriges Bildungs- und berufliches Niveau an. Ein Zusammenhang zwischen höherer Schulbildung und besserer Blutzuckereinstellung deutete sich bereits in dieser kleinen Stichprobe an, müsste jedoch an größeren Populationen verifiziert werden.

Die Tatsache, dass diese Befragung durchgeführt wurde, beurteilten über 60% der Teilnehmer in einer Frage zur Akzeptanz als gut oder sehr gut. Jedoch konnte nur knapp die Hälfte der Patienten den Fragebogen ganz ohne Hilfe ausfüllen, was für den eingeschränkten Gesundheitszustand der Teilnehmer spricht. Weniger als ein Drittel der Teilnehmer möchte nicht mehr angeschrieben werden. Um die Teilnahmequote zu steigern, empfiehlt sich für Folgebefragungen ein Erinnerungsschreiben.

Weitere Studien zur Bedeutung der Lebensqualitätsmessung als prognostischer Marker, im Hinblick auf die individuelle Abstimmung von Therapien und zu einer darauf aufbauenden Beurteilung der Behandlungsqualität im Kollektiv der DMP-Patienten erscheinen aufgrund dieser Studie gerechtfertigt. Auch die routinemäßige Erhebung der Lebensqualität und Patientenzufriedenheit sowie das systematische Heranziehen dieser Daten zur Spezifikation des Therapieziels und zur Kontrolle der Zielerreichung erscheinen wünschenswert.
5 Zusammenfassung

Im Hinblick auf weitere Aspekte der DMPs wurden in mehreren Schritten zusammengestellt und auf Verständlichkeit geprüfte Fragen zu objektiven Parametern (Körpergröße, Gewicht, BZ, HbA1c, RR) bzw. deren Kenntnis bei den Patienten, sowie Inanspruchnahme von und Zufriedenheit mit verschiedenen Leistungserbringern hinzugefügt. Außerdem wurden einige soziodemographische Daten und die Meinung der Patienten zur Befragung selbst erhoben.

Die Erkrankung war bei mehr als der Hälfte der Patienten seit über 5 Jahren diagnostiziert, 72,9% gaben Typ-2- und 5,7% Typ-1-Diabetes an. Gut 80% der Patienten würden von einer Gewichtsreduktion profitieren. Die Blutzuckerwerte wurden überwiegend ausreichend häufig kontrolliert und waren zufriedenstellend eingestellt. Der Blutdruck wurde ebenfalls regelmäßig kontrolliert, war aber etwas schlechter eingestellt, Cholesterinwerte wurden etwas seltener gemessen und waren auch weniger bekannt. Es entstand der Eindruck, dass die Patienten nur über mäßige Kenntnisse der Laborwerte verfügten. Bei der Therapie fiel die seltenste Angabe einer Diät (23%) auf. Schulungen waren nur von 50% der Teilnehmer besucht worden. In allen vorgenannten Bereichen, die die Information und die aktive Mitwirkung der Patienten betreffen, deuten sich also noch Verbesserungsmöglichkeiten an.

Die überwiegende Mehrheit (je nach Facharzt 60 bis 77,7%) der antwortenden Patienten war mit ihren behandelnden Ärzten zufrieden und besuchte sie regelmäßig. Hauptsprechpartner war der Hausarzt, der von allen Patienten mit ausgefülltem Fragebogen mindestens einmal innerhalb des letzten Jahres aufgesucht wurde. Auch Augenärzte wurden von 70% der Patienten im empfohlenen Zeitraum von einem Jahr besucht. Stationäre Behandlungen wurden von 70% der Patienten angegeben, die Zufriedenheit war etwas geringer als im ambulanten Sektor.

Nur knapp die Hälfte der Patienten konnte den Fragebogen ohne Hilfe ausfüllen, fast ebenso viele möchten jedoch wieder angeschrieben werden und über 60% beurteilten die Befragung als “gut” oder “sehr gut”. Als häufigste Gründe für Nichtteilnahme wurden die Länge des Fragebogens und “möchte keine Auskunft geben” genannt. Randbemerkungen zeigten, dass dabei gesundheitliche Einschränkungen einen wichtigen Einflussfaktor darstellten und dass diese Form der Befragung für einige Patienten ungewohnt war.

Signifikante Korrelationen traten überwiegend innerhalb der LQ, danach zwischen LQ und soziodemographischen Variablen oder der Inanspruchnahme, jedoch kaum mit technischen Variablen (BZ, RR usw.) auf. Das unterstützt die Annahme, dass LQ-Fragebögen die Patientenmeinung über die gesundheitsbezogene Lebensqualität oder die Krankheit wiedergeben und demzufolge auch zur Beschreibung oder Stratifizierung von Patientenpopulationen in zukünftigen Untersuchungen oder im Rahmen der Entscheidungsfindung in der Behandlung nutzbar sind. Dass die “technischen” Parameter, also Laborwerte oder physikalische Befunde, hier weniger aussagekräftig schienen, könnte einerseits an mangelnden Kenntnissen der Patienten liegen, andererseits daran, dass das subjektive Krankheitsempfinden, (oder die Lebensqualität) wichtiger für die Entscheidung zum Arztbesuch ist, als die nicht direkt spürbaren Labor- und Messwerte.

Aufgrund der hier dargestellten Ergebnisse erscheinen weitere Untersuchungen gerechtfertigt, in welchen Patientenbefragungen zur Lebensqualität sowohl prognostische Hinweise als auch Hilfe zur individuellen Therapieanpassung und zum individuellen Therapiemonitoring liefern können.

Bei DMP-Patienten wären eine routinemäßige Erhebung der Lebensqualität, hieran systematisch orientiert die Festlegung des Therapieziels und die Beurteilung der Zielerreichung nach einer vereinbarten Zeit und bei gleichzeitiger Beobachtung von Behandlungszielsowie Inanspruchnahme unter wissenschaftlicher Begleitung möglich und wünschenswert.
6 Literaturverzeichnis

in Diabetes Research and Practice.
Harwood Academic Publishers 1994, Chur, Switzerland

The Well-being Questionnaire, 89-109.
Harwood Academic Publishers 1994, Chur, Switzerland

The development of an individualized questionnaire measure of perceived impact of diabetes on quality of life: The ADDQoL.
Qual Life Res 8: 79-91

Studies of educational interventions and outcomes in diabetic adults: a meta-analysis revisited.
Patient Educ Couns 16: 189-215

Evidence based Medicine: ein Ansatz zu einer rationaleren Medizin.
Schweiz Ärzteztg 77: 1660-1667

Der EORTC-Lebensqualitätsfragebogen QLQ-C30 - Erste psychometrische Ergebnisse einer Querschnittsuntersuchung an älteren Personen.
Z Gerontopsychologie und -psychiatrie 6: 259-265

Was ist gesichert in der Therapie des Typ-2-Diabetikers? Ein aktueller Überblick in vier Teilen.
Teil II: Epidemiologische Daten.
Z Allg Med 77: 455-459

Was ist gesichert in der Therapie des Typ-2-Diabetikers? Ein aktueller Überblick in vier Teilen.
Teil III: Blutzuckersenkende Therapien.
Z Allg Med 77: 513-518

Diabetes self-management education.
Diabetes Care 18: 1204-1214

On the receiving end - III. Measurement of quality of life during cancer chemotherapy.
Ann Oncol 1: 213-217

Prognostic value of quality-of-life scores during chemothrapie for advanced breast-cancer.
J Clin Oncol 10: 1833-1838

Prognostic value of quality of life scores in a trial of chemotherapy with or without interferon in patients with metastatic malignant melanoma.
Eur J Cancer 29A: 1731-1734
 Quality of life in oncology practice: Prognostic value of EORTC QLQ-C30 scores in patients with
 advanced malignancy.
 Eur J Cancer 33: 1025-1030

[24] Cronbach LJ (1951)
 Coefficient alpha and the internal structure of tests.
 Psychometrika 16: 297-334

 The feasibility, reliability and validity of the EORTC QLQ-C30 in assessing the quality-of-life of
 patients with a symptomatic HIV-infection or AIDS (cdc-IV).
 Psychol Health 9: 65-77

 Is fasting glucose sufficient to define diabetes? Epidemiological data from 20 European studies. Euro-
 pean Diabetes Epidemiology Group.
 Diabetesologia 42: 647-654

[27] Deutsches EBM-Netzwerk: Deutsches Netzwerk Evidenz basierte Medizin
 URL: http://www.ebm-netzwerk.de/ [Stand 2006-09-27]

[28] Dillman DA (1978)
 Mail and telephone surveys - The total Design Method.
 Wiley 1978, New York

 Diabetes Care 9: 480-489

 Alltagsbelastungen von Patienten mit Diabetes mellitus.
 Roderer, Regensburg

[31] Eckert H (2001)
 Qualitätsmanagement in Rehabilitationseinrichtungen in der Bundesrepublik Deutschland - Eine stra-
 tifizierte repräsentative Studie zum Stand der Umsetzung.
 Rehabilitation 40: 337-345

 A Desktop Guide to Type 2 Diabetes mellitus.
 Exp Clin Endocrinol Diabetes 107: 390-420

 EORTC, Brussels, Belgium

[34] Fayers PM, Weeden S, Curran D on behalf of the EORTC Quality of Life Study Group (1998)
 EORTC QLQ-C30 Reference Values.
 EORTC, Brussels, Belgium

 Incomplete quality of life data in randomized trials: Missing items.
 Stat Med 17: 679-696
Interpreting quality of life data: population-based reference data for the EORTC QLQ-C30.
Eur J Cancer 37: 1331-1334

Quality of life for hemodialysis. Impact of sex, age, dialysis duration, primary renal disease and hemodialysis after transplant failure.
Nieren- und Hochdruckkrankheiten 27: 97-102

Development and validation of the diabetes care profile.
Eval and Health Prof 19: 208-230

The reliability and validity of a brief diabetes knowledge test.
Diabetes Care 21: 706-710

[40] Forsberg C, Björvell H (1993)
Swedish population norms for the OHRI, HI and STM-state.
Qual Life Res 2: 2386-2391

Cost-effectiveness of medical nutrition therapy provided by dieticians for persons with non-insulin-dependent diabetes mellitus.
J Am Diet Assoc 95: 1018-1024

Mortality in non-insulin-dependent diabetes, 233-257.
Bethesda, MD 1995: US Department of Health and Human Services, Public Health Service, National Institute of Health

Self-care behaviors and glycemic control in type I diabetes.
J Chron Dis 40: 399-412

In diabetes care, moving from compliance to adherence is not enough: something entirely different is needed.
Diabetes Care 22: 2090-2092

Relationship between glykohemoglobin (GHB) and mean blood glucose (MBG) in the Diabetes Complications and Control Trial (DCCT).
Diabetes 46, Suppl 1: 8A

The psychological dimension in cancer treatment.

Development of a type 2 diabetes symptom checklist: a measure of symptom severity.
Diabet Med 11: 253-261
[48] Hampson SE, Glasgow RE, Toobert DJ (1990)
 Personal models of diabetes and their relations to self-care activities.
 Health Psychol 9: 632-646

 Onset of NIDDM occurs at least 4-7 years before clinical diagnosis.
 Diabetes Care 15: 815-819

 Medical care for patients with diabetes. Epidemiologic aspects.
 Ann Intern Med 124: 117-122

 Typ-II-Diabetes und Alter.
 Verhaltenstherapie und Psychosoziale Praxis 24: 169-183

 Die Messung von Wohlbefinden bei Diabetikern: Evaluation des Wohlbefinden-Fragebogens von
 Bradley, 34-50.
 In: Kohlmann CW, Kulzer B (Hrsg): Diabetes und Psychologie
 Huber 1995, Bern, Göttingen, Toronto

 Innere Medizin, 614-639.
 Gerd Herold, Köln

 A test/retest study of the European Organization for Research and Treatment of Cancer Core Quality-
 of-Life Questionnaire.
 J Clin Oncol 13: 1249-1254

 Health-related quality of life in the general Norwegian population assessed by the European Organiza-
 tion for Research and Treatment of Cancer Core Quality-of-Life Questionnaire: The QLQ-C30 (+3).
 J Clin Oncol 16: 1188-1196

 Using reference data on quality of life - the importance of adjusting for age and gender, exemplified
 by the EORTC QLQ-C30 (+3).
 Eur J Cancer 34: 1381-1389

 Praktische Aspekte der standardisierten Messung der Lebensqualität bei stationären Patienten mit
 einem elektronischen Lebensqualitäts-Recorder.
 Med. Dissertation, Universität Ulm

 The evaluation of two measures of quality of life in patients with type I and type II diabetes.
 Diabetes Care 17: 267-274

 Active life expectancy in people with and without diabetes.
Das metabolische Syndrom als potenter kardiovaskulärer Risikofaktor für vorzeitigen Tod bei Typ II Diabetikern.
Diab Stoffw 1: 2-7

Epidemiology of diabetes mellitus: prevalence, incidence, pathogenesis and prognosis.
Z Arztl Fortbild Qualitatssich 96: 159-165

Short form (SF-36) health survey questionnaire: normative data for adults of working age.

Prognostic factors for patients with inoperable non-small cell lung cancer, limited disease.
Radiother Oncol 15: 235-242

[64] Kaplan RM (1985)
Quality of life measurement, 115-146.
In: Karloy P (Hrsg): Measurement Strategies in Health Psychology.
John Wiley, New York

Vorstellung der Ergebnisse der KBV-Versichertenbefragung, 2-3.
Pressegespräch 16. August, Berlin

KV Nordbaden/AOK

Epidemiologie, Klinik, Ätiologie und Pathogenese des Typ-2-Diabetes, 68-80.
5. Aufl. Thieme, Stuttgart, New York

Quality of life of Danish women: Population-based norms for the EORTC QLQ-C30.
Qual Life Res 6: 27-34

Sozialschicht und Gesundheit.
Gesundheitswesen 61: 169-177

[70] Knuth DE (1986)
Computers & Typesetting, Vol. A
The TeXbook
Addison-Wesley 2000, International

Diabetes care and research in Europe. The St. Vincent Declaration Action Programme.
WHO 1992, Copenhagen
Reduction of risk factors following lifestyle modification programme in subjects with type 2 (non-insulin dependent) diabetes mellitus.
Clin Physiol Funct Imaging 23: 21-30

Lebensqualität bei Patienten mit chronisch entzündlichen Darmerkrankungen.
Prax Klin Verhaltensmedizin Rehabilitation 4: 284-289

Psychologische Interventionskonzepte in der Therapie des Diabetes mellitus, 104-162.
Fischer, Stuttgart

[75] Lamport L (1994)
\LaTeX\ A Document Preparation System
2nd Ed Addison Wesley Professional

Kosten des Typ-2-Diabetes in Deutschland. Ergebnisse der CODE-2-Studie.
Dtsch Med Wochenschr 126: 585-589

Diab Stoffw 8: 11-21

Disease Management: Perspektiven für die deutsche Pharmaindustrie (Teil I).
Pharma Marketing Journal 6: 222-225

The Diabetes Health Profile (DHP): a new instrument for assessing the psychosocial profile of insulin-requiring patients: development and psychometric evaluation.
Qual Life Res 5: 242-254

In: Petermann F (Hrsg): Diabetes mellitus
Hogrefe 1995, Göttingen

Epidemiologie: Diabetes im Alter (31.03.2003)
[Stand 2006-10-02]

Evidence-based-medicine. Die “beweisgestützte” Medizin.
Führen und Wirtschaften im Krankenhaus 16: 124-127

Ergebnisse der Diabetesveinbarung in Thüringen.
Managed Care - Umsetzbarkeit des Konzeptes im deutschen Gesundheitssystem, 150.
Med. Dissertation, Universität St. Gallen

A practical guide for selecting quality-of-life measures in clinical trials and practice, 89-104.
In: Osoba D (Hrsg): Effect of cancer on quality of life.
CRC Press, Boca Raton

[86] Osoba D (1992)
Lessons learned from measuring health-related quality of life in oncology.
J Clin Oncol 12: 608-616

Die Prävalenz des Diabetes mellitus wird in Deutschland deutlich unterschätzt - eine bundesweite epidemiologische Studie auf der Basis einer HbA1c-Analyse.
Diab Stoffw 8: 189-200

[88] Patel UH, Babbs CF (1992)
A computer-based, automated, telephonic system to monitor patient progress in the home setting.
J Med Syst 16: 101-112

In: Petermann F (Hrsg): Diabetes mellitus.
Hogrefe 1995, Göttingen

[90] Pigou AC (1920)
The Economics of Welfare, 3-29.
MacMillan, London

Assessment of diabetes-related distress.
Diabetes Care 18: 754-760

Understanding and Assessing Diabetes-Specific Quality of Life.
Diabetes Spectrum 13: 36-48

Effectiveness and utility of a second line treatment in metastatic breast cancer.
Onkologie 18: 48-52

Messung von Lebensqualität.
Der Allgemeinarzt 18: 610-624

The Well-being Questionnaire: evidence for a three-factor structure with 12 items (W-BQ12).
Psychological 30: 455-462

Blutzuckermessung, eine Methode zur Früherkennung des Diabetes mellitus?
Med. Dissertation, Universität Heidelberg
[97] Presant CA (1984)
Quality of life in cancer patients. Who measures what?
Am J Clin Oncol 7: 571-573

Diabetologia 46: 182-189

[99] Reinecker H (1995)
Selbstmanagement bei Diabetes mellitus, 109-122.
In: Petermann F (Hrsg); Diabetes mellitus
Hogrefe 1995, Göttingen

Complianceprobleme bei Typ-I-Diabetikern.
Fortschr Med 109: 651-654

Effectiveness of interventions to improve patient compliance.
Med Care 36: 1138-1161

Typ-2-Diabetes-mellitus: Betreuung von chronisch Kranken in der Hausarztpraxis.
Dtsch Arztebl 102: A 2408-2412

Was ist Evidenz basierte Medizin und was ist sie nicht?
Münch med Wochenschr 139: 644-645

Evidence-based nursing.
Pflege 13: 47-52

Patienten-zentrierte Evaluation des Gesundheitszustands in einem longitudinalen Qualitätsmanagementsystem im Krankenhaus (QMK).
Das Gesundheitswesen 63: 205-211

Praktisches Lexikon der Gesundheitsökonomie, 15-16.
1. Aufl. St. Augustin: Asgrad-Verlag Hippe GmbH

Reference data for the quality of life questionnaire EORTC QLQ-C30 in the general German population.
Eur J Cancer 37: 1345-1351

Die Erfassung subjektiver Gesundheit bei Patienten der Kardiologie.
Prax Klinische Verhaltensmedizin Rehabilitation 4: 250-254

Praktische Aspekte der Lebensqualitätsmessung: Die standardisierte Messung der Lebensqualität bei
Ambulanzpatienten mit einem elektronischen Lebensqualitäts-Recorder.
Med. Dissertation, Universität Ulm

Quality of Life: A Closer Look at Measuring Patient’s Well-Being.
Diabetes Spectrum 13: 24-28

Measuring the quality of life of cancer patients: a concise QL-index for use by physicians.
J Chron Dis 34: 585-597

The European Organization for Research and Treatment of Cancer approach to quality of life assessment: Guidelines for developing questionnaire modules.
Qual Life Res 2: 287-295

The European Organization for Research and Treatment of Cancer approach to developing questionnaire modules: an update and overview. EORTC Quality of Life Study Group.
Qual Life Res 7: 291-300

Microalbuminuria in a random cohort of recently diagnosed type 2 (non-insulin-dependent) diabetic patients living in the greater Munich area.
Diabetologia 36: 1017-1020

Early initiation of sex and its lack of association with risk behavior among adolescent African-Americans.
Pediatrics 92: 13-19

Anal intercourse among preadolescents and early adolescent low-income urban African-Americans.
Arch Pediatr Adolesc Med 11: 1201-1204

Diabetische Begleiterkrankungen - Was ist gesichert in der Therapie?, 14-15.
2. Aufl. Arcis, München

Finden und Vereinbaren der Therapieziele, 50-57.
Med. Komm. München

Prävalenz des Diabetes mellitus in der erwachsenen Bevölkerung Deutschlands.
Gesundheitswesen 61: 85-89

Uses and some possible abuses of quality of life measures, 137-154.
In: Osoba D (Hrsg): Effect of cancer on quality of life.
CRC Press Inc., Boca Raton
Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial.
Brit Med J 326: 469-472

Die Sinsheimer Diabetes-Studie
Eine repräsentative Querschnittsstudie zur Versorgungsqualität von Typ-2-Diabetikern in der Hausarztpraxis.
Z Allg Med 80: 497-502

Study design, progress and performance.
Diabetologia 34: 877-890

Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).
Lancet 352: 837-853

Tight blood pressure control and risk of macrovascular and microvascular complications in type-2-diabetes (UKPDS 38).
Br Med J 317: 703-713

Efficacy of atenolol and captopril in reducing the risk of macrovascular and microvascular complications in type-2-diabetes (UKPDS 39).
Br Med J 317: 713-720

Quality of Life in Type 2 Diabetic Patients Is Affected by Complications But Not by Intensive Policies to Improve Blood Glucose or Blood Pressure Control (UKPDS 37).
Diabetes Care 22: 1125-1136

Estimated benefits of glycemic control in microvascular complications in type 2 diabetes.
J Amer Med Ass 127: 788-795

J Amer Med Ass 283: 889-896

Quantitative measurements of cutaneous perception in diabetic neuropathy.
Muscle Nerve 18: 574-584

Ergebnisse der Patientenschulung für Diabetiker in der stationären Rehabilitation, 245-268.
In: Petermann F (Hrsg): Diabetes mellitus.
Hogrefe 1995, Göttingen

Measuring functioning, wellbeing and other general health concepts, 7-23.
In: Osoba D (Hrsg): Effect of cancer on quality of life.
CRC Press Inc., Boca Raton

[133] Ware JE (1993)
SF-36 Health Survey: Manual and Interpretation Guide.
The Health Institute, New England Medical Center, Boston

The MOS 36-item short form health survey. Psychometric and clinical tests and validity in measuring physical and mental health constructs.
Med Care 31: 247-263

Impact of divergent evaluations by physicians and patients on patients complaints.
Public Health Rep 98: 141-145

[136] WHO Definition of Health (1948)
URL: http://who.int/suggestions/faq/en [Stand 2006-10-02]

Supporting autonomy to motivate patients with diabetes for glucose control.
Diabetes Care 21: 1644-1651

Diab Stoffw 2: 403-408

Epidemiology of hyperglycemia and atherosclerosis, 21-29.
In: Rudermann N, Williamson J, Brownlee M (Eds): Hyperglycemia and diabetes and vaskular disease.
Oxford University Press, New York

Quality-of-Life Research in Patients with Breast Cancer.
Cancer 74: 410-415

[141] Wing RR, Epstein LH, Marcus MD (1990)
Behavioral strategies for improving weight loss, 198-221.
Springer, New York

Heart disease and diabetes, 429-248.
In: Harris MI (Hrsg): Diabetes in America.
National Institutes of Health, Washington

[143] Das Deutsche Cochrane Zentrum
URL: http://www.cochrane.de/de/index.htm [Stand 2006-10-02]

[144] Das Deutsche Institut für Medizinische Dokumentation und Information
URL: http://www.dimdi.de/ [Stand 2006-10-02]
[145] EORTC Quality of Life Group
 URL: http://www.eortc.be/home/qol [Stand 2006-10-02]

[146] International Society for Quality of Life Research
 URL: http://www.isoqol.org/ [Stand 2006-10-02]

[147] LyX - The Document Processor
 URL: http://www.lyx.org [Stand 2006-10-02]

 (Practical Extraction and Report Language)
 URL: http://www.perl.org [Stand 2006-10-02]

[149] QoLID Quality of Life Instruments Database
 URL: http://www.qlmed.org/url.htm [Stand 2006-10-02]

[150] XnView
 http://www.xnview.com [Stand 2006-10-02]
7 Anhang

Liste der verwendeten Programme:

Datenvorbereitung, Pseudonymisierung und randomisierte Auswahl der Patienten für die Pilotstudie: Open Office Calc, MS Excel 97

Serienbrieferzeugung: \LaTeX, \BibTeX (pdflatex), bash, perl, bar, GIMP, epstopdf, erzeuge_serienbrief.sh, excel_csv_preprocessor.pl, serienbrief_generator.pl

Auftrennung und Formatkonvertierung der Scans: bash, unzip, tiffsplit, tiffcp, mmv

Vorverarbeitung der Scans zur Korrektur des Scan-Fehlers: XnView

Erkennung optischer Markierungen: Remark Office 3.0

Statistische Auswertung: MS Excel 97 und SPSS 11

Herstellung von Diagrammen: SPSS 11, epstopdf, MS-Excel 97 und xfig

Satz und Layout: \LaTeX und \BibTeX (miktex, pdflatex)

Eine SOP zur Herstellung der Serienbriefe sowie zur Verarbeitung der eingehenden Scan-Daten ist verfügbar; Informationen zu den für die Serienbrief-Erzeugung erstellten Perl- und Bash-Programmen sind von deren Autor Jörg Sigle erhältlich.

Verwendete Fragebögen:

Soziodemographische Fragen, EORTC QLQ-C30, Diabetesbezogene Fragen.

Die Abbildungen auf den folgenden Seiten zeigen ein Muster der Fragebögen, wie sie an die Patienten versandt wurden.
An Herrn
Max Mustermann
Hauptstraße 1
75000 Pforzheim

Fragebogen zur Behandlungszufriedenheit für

im Juli 2003

Patienten mit Diabetes mellitus (Zuckerkrankheit)

Sehr geehrter Herr Mustermann,
die Sektion Allgemeinmedizin der Universität Heidelberg untersucht zusammen mit der AOK, wie zufrieden Patienten mit Zuckerkrankheit mit ihrem Gesundheitszustand und ihrer Behandlung sind. Ihre eigene Meinung ist uns wichtig, um herauszufinden, ob und wie wir die medizinische Versorgung in Zukunft verbessern können.

Hierfür möchten wir Sie um Ihre Mithilfe bitten, indem Sie die beiliegenden wissenschaftlichen Fragebögen beantworten. Beachten Sie hierzu die Hinweise auf der folgenden Seite.

Wenn Sie alle Fragen beantwortet haben, entfernen Sie bitte diese erste Seite mit Ihrer eigenen Adresse. Einen Rücksendeumschlag haben wir beigelegt, das Porto übernehmen wir ebenfalls.

Selbstverständlich gehen Ihre persönlichen Daten nur anonymisiert in die Auswertung ein.
Die Teilnahme an dieser Befragung ist freiwillig.

Auch wenn Sie unsere Fragebögen nicht ausfüllen wollen, wäre es sehr freundlich, wenn Sie die entsprechende Frage auf der letzten Seite beantworten und die ansonsten leeren Bögen zurücksenden würden.

In jedem Fall danken wir Ihnen im voraus recht herzlich.

Mit freundlichen Grüßen,

Prof. Dr. med. H.-D. Klimm
Professor für Allgemeinmedizin
Universität Heidelberg

Claudia Preuss
Medizinstudentin

Paul Tritscher
Geschäftsführer
AOK Pforzheim

Abbildung 9: Seite 1 des an die Patienten gerichteten Schreibens
Rücksendeadresse

Antwort - Porto zahlt Empfänger
AOK Baden-Württemberg
Hauptverwaltung
z.H. Herrn Josef Löffler
Postfach 1647
72486 Sigmaringen

Hinweise zum Ausfüllen der Fragebögen

Bitte markieren Sie für jede Frage möglichst spontan die Antwort, die am ehesten für Sie zutrifft. Es gibt keine “richtigen” oder “falschen” Antworten, sondern es kommt auf Ihren persönlichen Eindruck an.

Bitte versuchen Sie, Ihre Antworten gut lesbar zu markieren:

Beispiele:

- ○ nicht markiert
- ✗ schlecht lesbar (zu dünn)
- ✗ schlecht lesbar (zu lang)
- ✗ markiert und gut lesbar
- ✗ markiert und gut lesbar

Hinweise zur Rücksendung der Fragebögen

Wenn Sie alle Fragen beantwortet haben, legen Sie bitte diese Seite mit der vorbereiteten Rücksendeadresse oben auf Ihre Fragebögen.

Danach stecken Sie bitte alle Seiten in den beiliegenden Umschlag, verschließen ihn gut und bringen ihn zur Post.

Wir möchten mit der Auswertung in ca. 2 Wochen beginnen und würden uns freuen, wenn Ihre Antwort bis dahin eingetroffen wäre.

Vielen Dank für Ihre Mithilfe!

Abbildung 10: Seite 2 des an die Patienten gerichteten Schreibens
<table>
<thead>
<tr>
<th>Fragebogen für Patienten mit Diabetes Mellitus</th>
<th>Persönliche Daten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welches Geschlecht haben Sie? ○ weiblich ○ männlich</td>
<td></td>
</tr>
<tr>
<td>Wie ist Ihr Familienstand? ○ ledig ○ geschieden / getrennt lebend ○ verwitwet ○ verheiratet / in einer Partnerschaft lebend</td>
<td></td>
</tr>
<tr>
<td>Welchen Schulabschluß besitzen Sie? ○ keinen ○ Abitur ○ Hauptschule / Volksschule ○ abgeschlossenes Studium ○ Realschule / Mittlere Reife ○ sonstigen, nämlich:</td>
<td></td>
</tr>
<tr>
<td>Wie sind Sie derzeit tätig? ○ nicht erwerbstätig ○ in Ausbildung ○ erwerbstätig ○ im Ruhestand ○ Wehr- / Ersatzdienst / soziales Jahr ○ anderweitig, und zwar:</td>
<td></td>
</tr>
<tr>
<td>Wie üben Sie Ihre Tätigkeit aus? ○ im eigenen Haushalt ○ angestellt ○ selbständig ○ arbeitslos ○ beamtet ○ anders, nämlich:</td>
<td></td>
</tr>
<tr>
<td>In welchem Bereich sind Sie tätig? ○ Landwirtschaft ○ Unterricht ○ Produktion ○ Medizin ○ Dienstleistung ○ Seelsorge ○ Wissenschaft ○ anderswo, nämlich:</td>
<td></td>
</tr>
<tr>
<td>Tragen Sie die Verantwortung für Mitarbeiter oder für einen Teil eines Betriebs? ○ ja ○ nein ○ keine Angabe</td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 11: Seite 3 des an die Patienten gerichteten Schreibens
Wir sind an einigen Fragen interessiert, die Sie und Ihre Gesundheit betreffen. Bitte beantworten Sie die folgenden Fragen selbst, indem Sie die Antwort ankreuzen, die am besten auf Sie zutrifft. Es gibt keine “richtigen” oder “falschen” Antworten. Ihre Angaben werden streng vertraulich behandelt.

Bereitet es Ihnen Schwierigkeiten, sich körperlich anzustrengen (z.B. eine schwere Einkaufstasche oder einen Koffer zu tragen?)

- [] überhaupt nicht
- [] wenig
- [] mäßig
- [] sehr
- [] weiß nicht

Bereitet es Ihnen Schwierigkeiten, einen längeren Spaziergang zu machen?

- [] überhaupt nicht
- [] wenig
- [] mäßig
- [] sehr
- [] weiß nicht

Bereitet es Ihnen Schwierigkeiten, eine kurze Strecke außer Haus zu gehen?

- [] überhaupt nicht
- [] wenig
- [] mäßig
- [] sehr
- [] weiß nicht

Müssen Sie tagsüber im Bett liegen oder in einem Sessel sitzen?

- [] überhaupt nicht
- [] wenig
- [] mäßig
- [] sehr
- [] weiß nicht

Brauchen Sie Hilfe beim Essen, Anziehen, Waschen oder Benutzen der Toilette?

- [] überhaupt nicht
- [] wenig
- [] mäßig
- [] sehr
- [] weiß nicht

Während der letzten Woche:

Waren Sie bei Ihrer Arbeit oder bei anderen tagtäglichen Beschäftigungen eingeschränkt?

- [] überhaupt nicht
- [] wenig
- [] mäßig
- [] sehr
- [] weiß nicht

Waren Sie bei Ihren Hobbies oder anderen Freizeitbeschäftigungen eingeschränkt?

- [] überhaupt nicht
- [] wenig
- [] mäßig
- [] sehr
- [] weiß nicht
<table>
<thead>
<tr>
<th>Fragebogen für Patienten mit Diabetes Mellitus</th>
<th>EORTC QLQ-C30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Während der letzten Woche:</td>
<td></td>
</tr>
<tr>
<td>Waren Sie kurzatmig?</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>☐ überhaupt nicht</td>
<td>☐ wenig</td>
</tr>
<tr>
<td>☐ mäßig</td>
<td>☐ sehr</td>
</tr>
<tr>
<td>☐ weiß</td>
<td>☐ nicht</td>
</tr>
<tr>
<td>Hatten Sie Schmerzen?</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>☐ überhaupt nicht</td>
<td>☐ wenig</td>
</tr>
<tr>
<td>☐ mäßig</td>
<td>☐ sehr</td>
</tr>
<tr>
<td>☐ weiß</td>
<td>☐ nicht</td>
</tr>
<tr>
<td>Mußten Sie sich ausruhen?</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>☐ überhaupt nicht</td>
<td>☐ wenig</td>
</tr>
<tr>
<td>☐ mäßig</td>
<td>☐ sehr</td>
</tr>
<tr>
<td>☐ weiß</td>
<td>☐ nicht</td>
</tr>
<tr>
<td>Hatten Sie Schlafstörungen?</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>☐ überhaupt nicht</td>
<td>☐ wenig</td>
</tr>
<tr>
<td>☐ mäßig</td>
<td>☐ sehr</td>
</tr>
<tr>
<td>☐ weiß</td>
<td>☐ nicht</td>
</tr>
<tr>
<td>Fühlten Sie sich schwach?</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>☐ überhaupt nicht</td>
<td>☐ wenig</td>
</tr>
<tr>
<td>☐ mäßig</td>
<td>☐ sehr</td>
</tr>
<tr>
<td>☐ weiß</td>
<td>☐ nicht</td>
</tr>
<tr>
<td>Hatten Sie Appetitmangel?</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>☐ überhaupt nicht</td>
<td>☐ wenig</td>
</tr>
<tr>
<td>☐ mäßig</td>
<td>☐ sehr</td>
</tr>
<tr>
<td>☐ weiß</td>
<td>☐ nicht</td>
</tr>
<tr>
<td>War Ihnen übel?</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>☐ überhaupt nicht</td>
<td>☐ wenig</td>
</tr>
<tr>
<td>☐ mäßig</td>
<td>☐ sehr</td>
</tr>
<tr>
<td>☐ weiß</td>
<td>☐ nicht</td>
</tr>
<tr>
<td>Haben Sie erbrochen?</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>☐ überhaupt nicht</td>
<td>☐ wenig</td>
</tr>
<tr>
<td>☐ mäßig</td>
<td>☐ sehr</td>
</tr>
<tr>
<td>☐ weiß</td>
<td>☐ nicht</td>
</tr>
<tr>
<td>Hatten Sie Verstopfung?</td>
<td>○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td>☐ überhaupt nicht</td>
<td>☐ wenig</td>
</tr>
<tr>
<td>☐ mäßig</td>
<td>☐ sehr</td>
</tr>
<tr>
<td>☐ weiß</td>
<td>☐ nicht</td>
</tr>
<tr>
<td>Fragebogen für Patienten mit Diabetes Mellitus</td>
<td>EORTC QLQ-C30</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>Während der letzten Woche:</td>
<td></td>
</tr>
<tr>
<td>Hatten Sie Durchfall?</td>
<td></td>
</tr>
<tr>
<td>überhaupt nicht</td>
<td>wenig</td>
</tr>
<tr>
<td>Waren Sie müde?</td>
<td></td>
</tr>
<tr>
<td>überhaupt nicht</td>
<td>wenig</td>
</tr>
<tr>
<td>Fühlten Sie sich durch Schmerzen in Ihrem alltäglichen Leben beeinträchtigt?</td>
<td></td>
</tr>
<tr>
<td>überhaupt nicht</td>
<td>wenig</td>
</tr>
<tr>
<td>Hatten Sie Schwierigkeiten, sich auf etwas zu konzentrieren, z.B. auf das Zeitunglesen oder das Fernsehen?</td>
<td></td>
</tr>
<tr>
<td>überhaupt nicht</td>
<td>wenig</td>
</tr>
<tr>
<td>Fühlten Sie sich angespannt?</td>
<td></td>
</tr>
<tr>
<td>überhaupt nicht</td>
<td>wenig</td>
</tr>
<tr>
<td>Haben Sie sich Sorgen gemacht?</td>
<td></td>
</tr>
<tr>
<td>überhaupt nicht</td>
<td>wenig</td>
</tr>
<tr>
<td>Waren Sie reizbar?</td>
<td></td>
</tr>
<tr>
<td>überhaupt nicht</td>
<td>wenig</td>
</tr>
<tr>
<td>Fühlten Sie sich niedergeschlagen?</td>
<td></td>
</tr>
<tr>
<td>überhaupt nicht</td>
<td>wenig</td>
</tr>
<tr>
<td>Hatten Sie Schwierigkeiten, sich an Dinge zu erinnern?</td>
<td></td>
</tr>
<tr>
<td>überhaupt nicht</td>
<td>wenig</td>
</tr>
</tbody>
</table>
Fragebogen für Patienten mit Diabetes Mellitus

EORTC QLQ-C30

Während der letzten Woche:

Hat Ihr körperlicher Zustand oder Ihre medizinische Behandlung Ihr Familienleben beeinträchtigt?

überhaupt nicht wenig mäßig sehr weiß nicht

Hat Ihr körperlicher Zustand oder Ihre medizinische Behandlung Ihr Zusammensein oder Ihre gemeinsamen Unternehmungen mit anderen Menschen beeinträchtigt?

überhaupt nicht wenig mäßig sehr weiß nicht

Hat Ihr körperlicher Zustand oder Ihre medizinische Behandlung für Sie finanzielle Schwierigkeiten mit sich gebracht?

überhaupt nicht wenig mäßig sehr weiß nicht

Bitte kreuzen Sie bei den folgenden Fragen das Antwortfeld zwischen “sehr schlecht” und “ausgezeichnet” an, das am besten auf Sie zutrifft:

Wie würden Sie insgesamt Ihre Lebensqualität während der letzten Woche einschätzen?

sehr schlecht ausgezeichnet weiß nicht

Wie würden Sie insgesamt Ihre Lebensqualität während der letzten Woche einschätzen?

sehr schlecht ausgezeichnet weiß nicht
<table>
<thead>
<tr>
<th>Fragebogen für Patienten mit Diabetes Mellitus</th>
<th>Ihre Behandlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wie groß sind Sie?</td>
<td>................ cm</td>
</tr>
<tr>
<td>Wieviel wiegen Sie?</td>
<td>................ kg</td>
</tr>
<tr>
<td>Welche Art der Zuckerkrankheit haben Sie?</td>
<td>"jugendlicher Diabetes" (Typ 1)</td>
</tr>
<tr>
<td>Wie lange ist Ihre Zuckerkrankheit schon bekannt?</td>
<td>1 Jahr oder weniger</td>
</tr>
<tr>
<td>Wann wurde Ihr Blutzucker zuletzt gemessen?</td>
<td>im letzten Vierteljahr</td>
</tr>
<tr>
<td>Wie hoch war Ihr letzter gemessener Blutzucker-Wert?</td>
<td>125 mg/dl oder weniger</td>
</tr>
<tr>
<td>Wann wurde Ihr HbA1c-Wert (Langzeit-Blutzucker-Wert) zuletzt gemessen?</td>
<td>im letzten Vierteljahr</td>
</tr>
<tr>
<td>Wie hoch war Ihr letzter gemessener HbA1c-Wert?</td>
<td>6,5% oder weniger</td>
</tr>
<tr>
<td>Fragebogen für Patienten mit Diabetes Mellitus</td>
<td>Ihre Behandlung</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>Wann wurde Ihr Blutdruck zuletzt gemessen?</td>
<td></td>
</tr>
<tr>
<td>☐ im letzten Vierteljahr</td>
<td>☐ im letzten halben Jahr</td>
</tr>
<tr>
<td>Wie hoch war Ihr letzter gemessener systolischer Blutdruck? (die größere der beiden Zahlen)</td>
<td></td>
</tr>
<tr>
<td>☐ 139 mmHg oder weniger</td>
<td>☐ 140 bis 159 mmHg</td>
</tr>
<tr>
<td>Wann wurde Ihr Cholesterin-Wert zuletzt gemessen?</td>
<td></td>
</tr>
<tr>
<td>☐ im letzten Vierteljahr</td>
<td>☐ im letzten halben Jahr</td>
</tr>
<tr>
<td>Wie hoch war Ihr letzter gemessener Cholesterin-Wert?</td>
<td></td>
</tr>
<tr>
<td>☐ niedrig</td>
<td>☐ normal</td>
</tr>
<tr>
<td>Wie wird Ihre Zuckerkrankheit behandelt? (mehrere Antworten möglich)</td>
<td></td>
</tr>
<tr>
<td>☐ gar nicht</td>
<td>☐ mit Diät</td>
</tr>
<tr>
<td>Wie oft haben Sie schon an einer Diabetiker-Schulung teilgenommen?</td>
<td></td>
</tr>
<tr>
<td>☐ noch nie</td>
<td>☐ 1 mal</td>
</tr>
<tr>
<td>Wie oft waren Sie im letzten Monat bei einem niedergelassenen Arzt (mit Praxis), oder hat ein Arzt Sie besucht?</td>
<td></td>
</tr>
<tr>
<td>☐ überhaupt nicht</td>
<td>☐ 1 mal</td>
</tr>
<tr>
<td>Wie oft waren Sie im letzten Jahr im Krankenhaus?</td>
<td></td>
</tr>
<tr>
<td>☐ überhaupt nicht</td>
<td>☐ 1 mal</td>
</tr>
</tbody>
</table>

Abbildung 17: Seite 9 des an die Patienten gerichteten Schreibens
Fragebogen für Patienten mit Diabetes Mellitus

Ihre Behandlung

Wann waren Sie zuletzt beim Hausarzt?

<table>
<thead>
<tr>
<th>Option</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>im letzten Vierteljahr</td>
<td>1</td>
</tr>
<tr>
<td>im letzten halben Jahr</td>
<td>2</td>
</tr>
<tr>
<td>im letzten Jahr</td>
<td>3</td>
</tr>
<tr>
<td>vor über einem Jahr</td>
<td>4</td>
</tr>
<tr>
<td>noch nie</td>
<td>5</td>
</tr>
<tr>
<td>weiß nicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Falls Sie beim Hausarzt waren: Waren Sie mit der Behandlung zufrieden?

<table>
<thead>
<tr>
<th>Option</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>überhaupt</td>
<td>1</td>
</tr>
<tr>
<td>nicht</td>
<td>2</td>
</tr>
<tr>
<td>wenig</td>
<td>3</td>
</tr>
<tr>
<td>mäßig</td>
<td>4</td>
</tr>
<tr>
<td>sehr</td>
<td>5</td>
</tr>
<tr>
<td>Frage trifft nicht zu</td>
<td>6</td>
</tr>
<tr>
<td>weiß nicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Wann waren Sie zuletzt beim Diabetologen / in einer Schwerpunktpraxis Diabetes?

<table>
<thead>
<tr>
<th>Option</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>im letzten Vierteljahr</td>
<td>1</td>
</tr>
<tr>
<td>im letzten halben Jahr</td>
<td>2</td>
</tr>
<tr>
<td>im letzten Jahr</td>
<td>3</td>
</tr>
<tr>
<td>vor über einem Jahr</td>
<td>4</td>
</tr>
<tr>
<td>noch nie</td>
<td>5</td>
</tr>
<tr>
<td>weiß nicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Falls Sie beim Diabetologen waren: Waren Sie mit der Behandlung zufrieden?

<table>
<thead>
<tr>
<th>Option</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>überhaupt</td>
<td>1</td>
</tr>
<tr>
<td>nicht</td>
<td>2</td>
</tr>
<tr>
<td>wenig</td>
<td>3</td>
</tr>
<tr>
<td>mäßig</td>
<td>4</td>
</tr>
<tr>
<td>sehr</td>
<td>5</td>
</tr>
<tr>
<td>Frage trifft nicht zu</td>
<td>6</td>
</tr>
<tr>
<td>weiß nicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Wann waren Sie zuletzt beim Augenarzt?

<table>
<thead>
<tr>
<th>Option</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>im letzten halben Jahr</td>
<td>1</td>
</tr>
<tr>
<td>im letzten Jahr</td>
<td>2</td>
</tr>
<tr>
<td>in den letzten 2 Jahren</td>
<td>3</td>
</tr>
<tr>
<td>vor über 2 Jahren</td>
<td>4</td>
</tr>
<tr>
<td>noch nie</td>
<td>5</td>
</tr>
<tr>
<td>weiß nicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Falls Sie beim Augenarzt waren: Waren Sie mit der Behandlung zufrieden?

<table>
<thead>
<tr>
<th>Option</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>überhaupt</td>
<td>1</td>
</tr>
<tr>
<td>nicht</td>
<td>2</td>
</tr>
<tr>
<td>wenig</td>
<td>3</td>
</tr>
<tr>
<td>mäßig</td>
<td>4</td>
</tr>
<tr>
<td>sehr</td>
<td>5</td>
</tr>
<tr>
<td>Frage trifft nicht zu</td>
<td>6</td>
</tr>
<tr>
<td>weiß nicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Wann waren Sie zuletzt beim Neurologen (Facharzt für Nervenkrankheiten)?

<table>
<thead>
<tr>
<th>Option</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>im letzten halben Jahr</td>
<td>1</td>
</tr>
<tr>
<td>im letzten Jahr</td>
<td>2</td>
</tr>
<tr>
<td>in den letzten 2 Jahren</td>
<td>3</td>
</tr>
<tr>
<td>vor über 2 Jahren</td>
<td>4</td>
</tr>
<tr>
<td>noch nie</td>
<td>5</td>
</tr>
<tr>
<td>weiß nicht</td>
<td>6</td>
</tr>
</tbody>
</table>

Falls Sie beim Neurologen waren: Waren Sie mit der Behandlung zufrieden?

<table>
<thead>
<tr>
<th>Option</th>
<th>Anzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>überhaupt</td>
<td>1</td>
</tr>
<tr>
<td>nicht</td>
<td>2</td>
</tr>
<tr>
<td>wenig</td>
<td>3</td>
</tr>
<tr>
<td>mäßig</td>
<td>4</td>
</tr>
<tr>
<td>sehr</td>
<td>5</td>
</tr>
<tr>
<td>Frage trifft nicht zu</td>
<td>6</td>
</tr>
<tr>
<td>weiß nicht</td>
<td>7</td>
</tr>
<tr>
<td>Fragebogen für Patienten mit Diabetes Mellitus</td>
<td>Ihre Behandlung</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>Wann waren Sie zuletzt im Krankenhaus?</td>
<td></td>
</tr>
<tr>
<td>☐ im letzten Vierteljahr</td>
<td>☐ im letzten halben Jahr</td>
</tr>
<tr>
<td>☐ im letzten Jahr</td>
<td>☐ vor über einem Jahr</td>
</tr>
<tr>
<td>☐ noch nie</td>
<td>☐ weiß nicht</td>
</tr>
</tbody>
</table>

Falls Sie im Krankenhaus waren: Waren Sie mit der Behandlung zufrieden?

<table>
<thead>
<tr>
<th>nicht</th>
<th>wenig</th>
<th>mäßig</th>
<th>sehr</th>
<th>Frage trifft nicht zu</th>
<th>weiß nicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ überhaupt nicht</td>
<td>☐ wenig</td>
<td>☐ mäßig</td>
<td>☐ sehr</td>
<td>☐ Frage trifft nicht zu</td>
<td>☐ weiß nicht</td>
</tr>
</tbody>
</table>

Wie zufrieden sind Sie _insgesamt_ mit der medizinischen Behandlung Ihrer Zuckerkrankheit?

<table>
<thead>
<tr>
<th>nicht</th>
<th>wenig</th>
<th>mäßig</th>
<th>sehr</th>
<th>Frage trifft nicht zu</th>
<th>weiß nicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ überhaupt nicht</td>
<td>☐ wenig</td>
<td>☐ mäßig</td>
<td>☐ sehr</td>
<td>☐ Frage trifft nicht zu</td>
<td>☐ weiß nicht</td>
</tr>
</tbody>
</table>

Wie finden Sie es, daß wir Sie nach Ihrer eigenen Meinung zu Ihrer Behandlung fragen?

<table>
<thead>
<tr>
<th>nicht</th>
<th>wenig</th>
<th>mäßig</th>
<th>sehr</th>
<th>Frage trifft nicht zu</th>
<th>weiß nicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ schlecht</td>
<td>☐ ist mir</td>
<td>☐ gut</td>
<td>☐ sehr gut</td>
<td>☐ weiß nicht</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>gleichgültig</td>
</tr>
</tbody>
</table>

Konnten Sie diesen Fragebogen selbst ausfüllen?

<table>
<thead>
<tr>
<th>nicht</th>
<th>wenig</th>
<th>mäßig</th>
<th>sehr</th>
<th>Frage trifft nicht zu</th>
<th>weiß nicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ ja, völlig selbständig</td>
<td>☐ ich benötigte etwas Hilfe</td>
<td>☐ nein, nur mit viel Hilfe</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Falls wir in Zukunft eine weitere Patientenbefragung durchführen: Möchten Sie wieder angeschrieben werden?

<table>
<thead>
<tr>
<th>nicht</th>
<th>wenig</th>
<th>mäßig</th>
<th>sehr</th>
<th>Frage trifft nicht zu</th>
<th>weiß nicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ ja</td>
<td>☐ ist mir</td>
<td>☐ nein</td>
<td></td>
<td></td>
<td>gleichgültig</td>
</tr>
</tbody>
</table>

Nur falls Sie nicht _an dieser_ Befragung teilnehmen wollten:

<table>
<thead>
<tr>
<th>nicht</th>
<th>wenig</th>
<th>mäßig</th>
<th>sehr</th>
<th>Frage trifft nicht zu</th>
<th>weiß nicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ ich möchte keine Auskunft geben.</td>
<td>☐ ich finde den Fragebogen zu lang.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ ich finde den Fragebogen zu kompliziert.</td>
<td>☐ ich habe sonstige Gründe, und zwar:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ ich habe sonstige Gründe, und zwar:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seite 11 von 11
8 Lebenslauf

Personalien
Name und Vorname Preuß, Claudia Judith
Geburtsdatum 20.09.1977
Geburtsort Pforzheim
Familienstand ledig
Vater Günther Preuß, Dipl.-Ing. FH
Mutter Christl Preuß, Arzthelferin

Schulischer Werdegang
1984-1997 Freie Waldorfschule Pforzheim
24.06.1997 Abitur

Universitärer Werdegang
10/1997 Beginn des Medizinstudiums an der Universität Ulm
09.09.1999 Ärztliche Vorprüfung
29.08.2000 Erster Abschnitt der Ärztlichen Prüfung
10/2001 Studium an der Medizinischen Fakultät in Angers, Frankreich
10/2000 Fortsetzung des Studiums in Ulm
03.04.2003 Zweiter Abschnitt der Ärztlichen Prüfung
04/03-04/04 Praktisches Jahr in Flawil, Schweiz; Fribourg, Schweiz und Biberach
12.05.2004 Dritter Abschnitt der Ärztlichen Prüfung

Beruflicher Werdegang
07/04-08/05 Teilzeitarbeit als Assistenzärztin im Paracelsus-Krankenhaus Bad Liebenzell
09/04-05/05 Kunsttherapieausbildung in Unterlengenhardt, Bad Liebenzell
10/05-06/06 Assistenzärztin im Hôpital Régional de Porrentruy, Schweiz, Chirurgie
12/2006 Assistenzärztin im Kreiskrankenhaus Calw, Innere Medizin
9 Danksagung

Für die gute und freundliche Betreuung meiner Dissertation möchte ich Herrn Professor Dr. med. Hans-Dieter Klimm herzlich danken.

Außerdem gilt mein Dank

Meinen Eltern Christl und Günther Preuß, die diese Arbeit und meine gesamte bisherige Ausbildung in jeder Hinsicht unterstützt haben.

Herrn Dr. med. Jörg Sigle für seine wertvolle Hilfe und Geduld bei inhaltlichen, wissenschaftlichen und programmiertechnischen Fragen. Und besonders für die Anregung, LyX zu verwenden und die Folgen dieses Vorschlags klaglos zu ertragen...

Herrn Dr. med. Wolfgang und Annerose Streibl für die Möglichkeit, in ihrer Praxis die ersten Probebefragungen durchführen zu dürfen.

Frau Dr. med. Dagmar Weise für ihre Anregungen bei der Zusammenstellung der diabetesbezogenen Fragen.

Frau Jessica Alemann für ihre Unterstützung beim Korrekturlesen.

Meinen Brüdern Michael und Jan für Rat und Tat zu MS Excel.

Herrn Dr. biol. hum. Michael Gommel für seine Anregungen und Hilfe beim Korrekturlesen.

Den Mitarbeitern der AOK, insbesondere Herrn Graf, Herrn Tritsch und Herrn Kopp, deren freundliche Kooperation zum Gelingen dieser Studie beigetragen hat.